Spaces:
Running
Running
File size: 13,793 Bytes
24342ea c89cc59 a184be7 491769d e69c140 6baa45b 491769d e1ff28f 972d1e2 d17badf a184be7 d95e3f7 bf2bb14 d95e3f7 db7d152 d95e3f7 e69c140 d95e3f7 db7d152 7ab4fbd c89cc59 db7d152 a184be7 d95e3f7 db7d152 98993ac d797551 e69c140 d797551 d95e3f7 e319620 a806d95 d95e3f7 e319620 24342ea 750ea35 6ac5501 db7d152 6ac5501 db7d152 6ac5501 db7d152 e69c140 750ea35 c89cc59 6baa45b db7d152 6baa45b db7d152 c89cc59 8699dd9 e69c140 d797551 8699dd9 e69c140 6baa45b a184be7 e319620 db7d152 e319620 db7d152 e319620 db7d152 e319620 db7d152 e319620 db7d152 e319620 972d1e2 db7d152 6baa45b 7b8e77a db7d152 e319620 db7d152 6baa45b db7d152 94730d2 e69c140 94730d2 db7d152 e319620 db7d152 94730d2 db7d152 a184be7 e69c140 9f69ff9 e69c140 a184be7 e319620 a184be7 db7d152 e69c140 db7d152 e69c140 8dca5f4 e69c140 8dca5f4 e69c140 a184be7 8dca5f4 e69c140 8dca5f4 6baa45b e69c140 8dca5f4 e69c140 8dca5f4 e69c140 8dca5f4 6baa45b eb32926 8699dd9 6baa45b d17badf a184be7 e69c140 8dca5f4 d17badf 3674c04 a184be7 e69c140 d17badf e319620 e69c140 8dca5f4 e319620 e69c140 8dca5f4 d17badf 3674c04 972d1e2 3674c04 d95e3f7 db7d152 d95e3f7 6baa45b 98993ac 6baa45b 98993ac 6baa45b 98993ac 6baa45b 98993ac 6baa45b 8dca5f4 e69c140 8dca5f4 e69c140 8dca5f4 d95e3f7 caf6b1d bbdf35d 4eb1be8 d01e94b 4eb1be8 95cfa66 e69c140 4eb1be8 3674c04 8dca5f4 e69c140 98993ac 6baa45b 4eb1be8 bbdf35d c89cc59 acff712 bbdf35d c89cc59 8dca5f4 e69c140 8dca5f4 6baa45b 3674c04 c89cc59 bbdf35d c89cc59 3674c04 acff712 8dca5f4 acff712 8dca5f4 417372b acff712 6baa45b acff712 6baa45b acff712 3674c04 acff712 6baa45b acff712 6baa45b acff712 e69c140 8dca5f4 acff712 6baa45b dd67f43 24342ea 6baa45b d95e3f7 6baa45b e69c140 6baa45b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import os
import base64
import requests
import gradio as gr
from huggingface_hub import InferenceClient
from dataclasses import dataclass
import speech_recognition as sr
import easyocr
from PIL import Image
@dataclass
class ChatMessage:
role: str
content: str
def to_dict(self):
return {"role": self.role, "content": self.content}
class XylariaChat:
def __init__(self):
self.hf_token = os.getenv("HF_TOKEN")
if not self.hf_token:
raise ValueError("HuggingFace token not found in environment variables")
self.client = InferenceClient(
model="Qwen/QwQ-32B-Preview",
api_key=self.hf_token
)
self.image_api_url = "https://api-inference.huggingface.co/models/Salesforce/blip-image-captioning-large"
self.image_api_headers = {"Authorization": f"Bearer {self.hf_token}"}
self.conversation_history = []
self.persistent_memory = {}
self.system_prompt = """You are a helpful and harmless assistant. You are Xylaria developed by Sk Md Saad Amin . You should think step-by-step."""
self.reader = easyocr.Reader(['ch_sim','en'])
def store_information(self, key, value):
self.persistent_memory[key] = value
return f"Stored: {key} = {value}"
def retrieve_information(self, key):
return self.persistent_memory.get(key, "No information found for this key.")
def reset_conversation(self):
self.conversation_history = []
self.persistent_memory.clear()
try:
self.client = InferenceClient(
model="Qwen/QwQ-32B-Preview",
api_key=self.hf_token
)
except Exception as e:
print(f"Error resetting API client: {e}")
return None
def caption_image(self, image):
try:
if isinstance(image, str) and os.path.isfile(image):
with open(image, "rb") as f:
data = f.read()
elif isinstance(image, str):
if image.startswith('data:image'):
image = image.split(',')[1]
data = base64.b64decode(image)
else:
data = image.read()
response = requests.post(
self.image_api_url,
headers=self.image_api_headers,
data=data
)
if response.status_code == 200:
caption = response.json()[0].get('generated_text', 'No caption generated')
return caption
else:
return f"Error captioning image: {response.status_code} - {response.text}"
except Exception as e:
return f"Error processing image: {str(e)}"
def perform_math_ocr(self, image_path):
try:
img = Image.open(image_path)
result = self.reader.readtext(image_path)
text = ' '.join([item[1] for item in result])
return text.strip()
except Exception as e:
return f"Error during Math OCR: {e}"
def get_response(self, user_input, image=None):
try:
messages = []
messages.append(ChatMessage(
role="system",
content=self.system_prompt
).to_dict())
if self.persistent_memory:
memory_context = "Remembered Information:\n" + "\n".join(
[f"{k}: {v}" for k, v in self.persistent_memory.items()]
)
messages.append(ChatMessage(
role="system",
content=memory_context
).to_dict())
for msg in self.conversation_history:
messages.append(msg)
if image:
image_caption = self.caption_image(image)
user_input = f"description of an image: {image_caption}\n\nUser's message about it: {user_input}"
messages.append(ChatMessage(
role="user",
content=user_input
).to_dict())
input_tokens = sum(len(msg['content'].split()) for msg in messages)
max_new_tokens = 16384 - input_tokens - 50
max_new_tokens = min(max_new_tokens, 10020)
stream = self.client.chat_completion(
messages=messages,
model="Qwen/QwQ-32B-Preview",
temperature=0.7,
max_tokens=max_new_tokens,
top_p=0.9,
stream=True
)
return stream
except Exception as e:
print(f"Detailed error in get_response: {e}")
return f"Error generating response: {str(e)}"
def messages_to_prompt(self, messages):
prompt = ""
for msg in messages:
if msg["role"] == "system":
prompt += f"<|system|>\n{msg['content']}<|end|>\n"
elif msg["role"] == "user":
prompt += f"<|user|>\n{msg['content']}<|end|>\n"
elif msg["role"] == "assistant":
prompt += f"<|assistant|>\n{msg['content']}<|end|>\n"
prompt += "<|assistant|>\n"
return prompt
def recognize_speech(self, audio_file):
recognizer = sr.Recognizer()
try:
with sr.AudioFile(audio_file) as source:
audio_data = recognizer.record(source)
text = recognizer.recognize_google(audio_data)
return text
except sr.UnknownValueError:
return "Could not understand audio"
except sr.RequestError:
return "Could not request results from Google Speech Recognition service"
def create_interface(self):
def streaming_response(message, chat_history, image_filepath, math_ocr_image_path, audio_file):
if audio_file:
voice_message = self.recognize_speech(audio_file)
if not voice_message.startswith("Error"):
message = voice_message
ocr_text = ""
if math_ocr_image_path:
ocr_text = self.perform_math_ocr(math_ocr_image_path)
if ocr_text.startswith("Error"):
updated_history = chat_history + [[{"role": "user", "content": message}, {"role": "assistant", "content": ocr_text}]]
yield "", updated_history, None, None, None
return
elif len(ocr_text) > 500:
ocr_text = "OCR output is too large to be processed."
updated_history = chat_history + [[{"role": "user", "content": message}, {"role": "assistant", "content": ocr_text}]]
yield "", updated_history, None, None, None
return
else:
message = f"Math OCR Result: {ocr_text}\n\nUser's message: {message}"
if image_filepath:
response_stream = self.get_response(message, image_filepath)
else:
response_stream = self.get_response(message)
if isinstance(response_stream, str):
updated_history = chat_history + [[{"role": "user", "content": message}, {"role": "assistant", "content": response_stream}]]
yield "", updated_history, None, None, None
return
full_response = ""
updated_history = chat_history + [[{"role": "user", "content": message}, {"role": "assistant", "content": ""}]]
try:
for chunk in response_stream:
if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content:
chunk_content = chunk.choices[0].delta.content
full_response += chunk_content
updated_history[-1][1]["content"] = full_response
yield "", updated_history, None, None, None
except Exception as e:
print(f"Streaming error: {e}")
updated_history[-1][1]["content"] = f"Error during response: {e}"
yield "", updated_history, None, None, None
return
self.conversation_history.append(ChatMessage(role="user", content=message).to_dict())
self.conversation_history.append(ChatMessage(role="assistant", content=full_response).to_dict())
if len(self.conversation_history) > 10:
self.conversation_history = self.conversation_history[-10:]
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
body, .gradio-container {
font-family: 'Inter', sans-serif !important;
}
.chatbot-container .message {
font-family: 'Inter', sans-serif !important;
}
.gradio-container input,
.gradio-container textarea,
.gradio-container button {
font-family: 'Inter', sans-serif !important;
}
.image-container {
display: flex;
gap: 10px;
margin-bottom: 10px;
}
.image-upload {
border: 1px solid #ccc;
border-radius: 8px;
padding: 10px;
background-color: #f8f8f8;
}
.image-preview {
max-width: 200px;
max-height: 200px;
border-radius: 8px;
}
.clear-button {
display: none;
}
.chatbot-container .message {
opacity: 0;
animation: fadeIn 0.5s ease-in-out forwards;
}
@keyframes fadeIn {
from {
opacity: 0;
transform: translateY(20px);
}
to {
opacity: 1;
transform: translateY(0);
}
}
.gradio-accordion {
overflow: hidden;
transition: max-height 0.3s ease-in-out;
max-height: 0;
}
.gradio-accordion.open {
max-height: 500px;
}
"""
with gr.Blocks(theme='soft', css=custom_css) as demo:
with gr.Column():
chatbot = gr.Chatbot(
label="Xylaria 1.5 Senoa (EXPERIMENTAL)",
height=500,
show_copy_button=True,
type='messages'
)
with gr.Accordion("Image Input", open=False) as accordion:
with gr.Row(elem_classes="image-container"):
with gr.Column(elem_classes="image-upload"):
img = gr.Image(
sources=["upload", "webcam"],
type="filepath",
label="Upload Image",
elem_classes="image-preview"
)
with gr.Column(elem_classes="image-upload"):
math_ocr_img = gr.Image(
sources=["upload", "webcam"],
type="filepath",
label="Upload Image for Math OCR",
elem_classes="image-preview"
)
with gr.Row():
with gr.Column(scale=4):
txt = gr.Textbox(
show_label=False,
placeholder="Type your message...",
container=False
)
with gr.Column(scale=1):
audio_input = gr.Audio(
sources=["microphone"],
type="filepath",
label="Voice Input"
)
btn = gr.Button("Send", scale=1)
with gr.Row():
clear = gr.Button("Clear Conversation")
clear_memory = gr.Button("Clear Memory")
btn.click(
fn=streaming_response,
inputs=[txt, chatbot, img, math_ocr_img, audio_input],
outputs=[txt, chatbot, img, math_ocr_img, audio_input]
)
txt.submit(
fn=streaming_response,
inputs=[txt, chatbot, img, math_ocr_img, audio_input],
outputs=[txt, chatbot, img, math_ocr_img, audio_input]
)
clear.click(
fn=lambda: None,
inputs=None,
outputs=[chatbot],
queue=False
)
clear_memory.click(
fn=self.reset_conversation,
inputs=None,
outputs=[chatbot],
queue=False
)
demo.load(None, None, None, _js="""
() => {
const accordion = document.querySelector(".gradio-accordion");
if (accordion) {
const accordionHeader = accordion.querySelector(".label-wrap");
accordionHeader.addEventListener("click", () => {
accordion.classList.toggle("open");
});
}
}
""")
demo.load(self.reset_conversation, None, None)
return demo
def main():
chat = XylariaChat()
interface = chat.create_interface()
interface.launch(
share=True,
debug=True
)
if __name__ == "__main__":
main() |