Spaces:
Running
Running
File size: 9,610 Bytes
24342ea c89cc59 a184be7 65a6bd0 e1ff28f a184be7 d95e3f7 bf2bb14 d95e3f7 4eb1be8 d95e3f7 c89cc59 d95e3f7 4eb1be8 c89cc59 d95e3f7 a184be7 d95e3f7 4eb1be8 d95e3f7 3c9fbfb dff1d8f c89cc59 d95e3f7 a806d95 d95e3f7 24342ea 750ea35 4eb1be8 6ac5501 750ea35 6ac5501 750ea35 6ac5501 4eb1be8 6ac5501 4eb1be8 6ac5501 4eb1be8 6ac5501 750ea35 c89cc59 d95e3f7 a184be7 d95e3f7 a184be7 4eb1be8 d95e3f7 4eb1be8 c89cc59 9f69ff9 a184be7 9f69ff9 a184be7 4eb1be8 9f69ff9 4eb1be8 a184be7 c89cc59 d95e3f7 c89cc59 4eb1be8 d95e3f7 a184be7 c89cc59 4eb1be8 9f69ff9 a184be7 4eb1be8 9f69ff9 d95e3f7 4eb1be8 d95e3f7 c89cc59 4eb1be8 d95e3f7 4eb1be8 d95e3f7 4eb1be8 d95e3f7 4eb1be8 d95e3f7 caf6b1d 9f69ff9 4eb1be8 c89cc59 4eb1be8 c89cc59 4eb1be8 c89cc59 4eb1be8 c89cc59 4eb1be8 c89cc59 4eb1be8 c89cc59 4eb1be8 6ac5501 4eb1be8 dd67f43 24342ea d95e3f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import os
import base64
import requests
import gradio as gr
from huggingface_hub import InferenceClient
class XylariaChat:
def __init__(self):
# Securely load HuggingFace token
self.hf_token = os.getenv("HF_TOKEN")
if not self.hf_token:
raise ValueError("HuggingFace token not found in environment variables")
# Initialize the inference client
self.client = InferenceClient(
model=os.getenv("MODEL_NAME"),
api_key=self.hf_token
)
# Image captioning API setup
self.image_api_url = "https://api-inference.huggingface.co/models/microsoft/git-large-coco"
self.image_api_headers = {"Authorization": f"Bearer {self.hf_token}"}
# Initialize conversation history and persistent memory
self.conversation_history = []
self.persistent_memory = {}
# System prompt with more detailed instructions
self.system_prompt = """You are a helpful and harmless assistant. You are Xylaria developed by Sk Md Saad Amin(india, 12 year old). You should think step-by-step.
"""
def store_information(self, key, value):
"""Store important information in persistent memory"""
self.persistent_memory[key] = value
def retrieve_information(self, key):
"""Retrieve information from persistent memory"""
return self.persistent_memory.get(key)
def reset_conversation(self):
"""
Completely reset the conversation history, persistent memory,
and clear API-side memory
"""
# Clear local memory
self.conversation_history = []
self.persistent_memory.clear()
# Clear API-side memory by resetting the conversation
try:
# Attempt to clear any API-side session or context
self.client = InferenceClient(
model="Qwen/QwQ-32B-Preview",
api_key=self.hf_token
)
except Exception as e:
print(f"Error resetting API client: {e}")
return None # To clear the chatbot interface
def caption_image(self, image):
"""
Caption an uploaded image using Hugging Face API
Args:
image (str): Base64 encoded image or file path
Returns:
str: Image caption or error message
"""
try:
# If image is a file path, read and encode
if isinstance(image, str) and os.path.isfile(image):
with open(image, "rb") as f:
data = f.read()
# If image is already base64 encoded
elif isinstance(image, str):
# Remove data URI prefix if present
if image.startswith('data:image'):
image = image.split(',')[1]
data = base64.b64decode(image)
# If image is a file-like object
else:
data = image.read()
# Send request to Hugging Face API
response = requests.post(
self.image_api_url,
headers=self.image_api_headers,
data=data
)
# Check response
if response.status_code == 200:
caption = response.json()[0].get('generated_text', 'No caption generated')
return caption
else:
return f"Error captioning image: {response.text}"
except Exception as e:
return f"Error processing image: {str(e)}"
def get_response(self, user_input, image=None):
# Prepare messages with conversation context and persistent memory
messages = [
{"role": "system", "content": self.system_prompt},
*self.conversation_history,
]
# Add persistent memory context if available
if self.persistent_memory:
memory_context = "Remembered Information:\n" + "\n".join(
[f"{k}: {v}" for k, v in self.persistent_memory.items()]
)
messages.insert(1, {"role": "system", "content": memory_context})
# Process image if uploaded
if image:
image_caption = self.caption_image(image)
user_input = f"Image description: {image_caption}\n\nUser's message: {user_input}"
# Add user input
messages.append({"role": "user", "content": user_input})
# Generate response with streaming
try:
stream = self.client.chat.completions.create(
messages=messages,
temperature=0.5,
max_tokens=10240,
top_p=0.7,
stream=True
)
return stream
except Exception as e:
return f"Error generating response: {str(e)}"
def create_interface(self):
def streaming_response(message, chat_history, image):
# Clear input textbox
response_stream = self.get_response(message, image)
# If it's an error, return immediately
if isinstance(response_stream, str):
return "", chat_history + [[message, response_stream]], None
# Prepare for streaming response
full_response = ""
updated_history = chat_history + [[message, ""]]
# Streaming output
for chunk in response_stream:
if chunk.choices[0].delta.content:
chunk_content = chunk.choices[0].delta.content
full_response += chunk_content
# Update the last message in chat history with partial response
updated_history[-1][1] = full_response
yield "", updated_history, None
# Update conversation history
self.conversation_history.append(
{"role": "user", "content": message}
)
self.conversation_history.append(
{"role": "assistant", "content": full_response}
)
# Limit conversation history to prevent token overflow
if len(self.conversation_history) > 10:
self.conversation_history = self.conversation_history[-10:]
# Custom CSS for Inter font
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
body, .gradio-container {
font-family: 'Inter', sans-serif !important;
}
.chatbot-container .message {
font-family: 'Inter', sans-serif !important;
}
.gradio-container input,
.gradio-container textarea,
.gradio-container button {
font-family: 'Inter', sans-serif !important;
}
"""
with gr.Blocks(theme='soft', css=custom_css) as demo:
# Chat interface with improved styling
with gr.Column():
chatbot = gr.Chatbot(
label="Xylaria 1.4 Senoa",
height=500,
show_copy_button=True
)
# Input row with improved layout and image upload
with gr.Row():
with gr.Column(scale=4):
txt = gr.Textbox(
show_label=False,
placeholder="Type your message...",
container=False
)
img = gr.Image(
sources=["upload", "camera"],
type="filepath",
label="Upload or Capture Image"
)
btn = gr.Button("Send", scale=1)
# Clear history and memory buttons
with gr.Row():
clear = gr.Button("Clear Conversation")
clear_memory = gr.Button("Clear Memory")
# Submit functionality with streaming and image support
btn.click(
fn=streaming_response,
inputs=[txt, chatbot, img],
outputs=[txt, chatbot, img]
)
txt.submit(
fn=streaming_response,
inputs=[txt, chatbot, img],
outputs=[txt, chatbot, img]
)
# Clear conversation history
clear.click(
fn=lambda: None,
inputs=None,
outputs=[chatbot],
queue=False
)
# Clear persistent memory and reset conversation
clear_memory.click(
fn=self.reset_conversation,
inputs=None,
outputs=[chatbot],
queue=False
)
# Ensure memory is cleared when the interface is closed
demo.load(self.reset_conversation, None, None)
return demo
# Launch the interface
def main():
chat = XylariaChat()
interface = chat.create_interface()
interface.launch(
share=True, # Optional: create a public link
debug=True # Show detailed errors
)
if __name__ == "__main__":
main() |