File size: 16,297 Bytes
24342ea
c89cc59
 
a184be7
491769d
 
8699dd9
 
491769d
 
 
 
 
 
e1ff28f
d17badf
 
 
 
a184be7
 
d95e3f7
 
bf2bb14
d95e3f7
db7d152
e319620
d95e3f7
db7d152
d95e3f7
 
db7d152
c89cc59
db7d152
c89cc59
db7d152
d95e3f7
a184be7
d95e3f7
db7d152
d95e3f7
82d001a
db7d152
d95e3f7
 
 
e319620
a806d95
d95e3f7
 
e319620
24342ea
750ea35
 
db7d152
6ac5501
750ea35
6ac5501
750ea35
6ac5501
db7d152
 
6ac5501
 
db7d152
6ac5501
 
 
 
db7d152
6ac5501
750ea35
c89cc59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db7d152
c89cc59
 
db7d152
c89cc59
 
db7d152
 
c89cc59
 
db7d152
c89cc59
 
 
 
 
db7d152
 
c89cc59
 
 
8699dd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c89cc59
e319620
 
 
 
 
 
 
 
a184be7
e319620
 
db7d152
e319620
 
db7d152
e319620
db7d152
 
e319620
 
 
 
 
 
db7d152
e319620
db7d152
 
d17badf
e319620
 
db7d152
e319620
db7d152
 
e319620
 
 
 
db7d152
e319620
 
db7d152
e319620
db7d152
 
94730d2
 
 
 
 
 
 
e319620
db7d152
 
e319620
db7d152
94730d2
db7d152
a184be7
 
4eb1be8
9f69ff9
4eb1be8
a184be7
e319620
a184be7
 
db7d152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a184be7
8699dd9
 
 
 
 
 
 
 
 
 
 
 
 
3674c04
 
 
 
 
8699dd9
d17badf
 
a184be7
d17badf
 
8699dd9
d17badf
3674c04
9f69ff9
a184be7
 
d17badf
9f69ff9
e319620
 
 
 
 
db7d152
e319620
 
8699dd9
e319620
 
d17badf
 
8699dd9
d17badf
3674c04
d95e3f7
 
 
 
 
 
 
3674c04
d17badf
d95e3f7
 
 
acff712
d95e3f7
 
 
 
 
 
 
 
db7d152
 
d95e3f7
 
 
acff712
 
 
 
 
 
 
 
 
 
bbdf35d
acff712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d95e3f7
caf6b1d
bbdf35d
4eb1be8
 
 
d01e94b
4eb1be8
95cfa66
4eb1be8
3674c04
acff712
 
 
 
 
 
 
 
 
 
 
8699dd9
 
 
 
 
 
 
 
 
 
 
acff712
 
4eb1be8
bbdf35d
c89cc59
acff712
bbdf35d
c89cc59
 
bbdf35d
3674c04
4eb1be8
c89cc59
bbdf35d
c89cc59
3674c04
acff712
 
 
 
 
 
 
3674c04
8699dd9
 
 
 
 
 
 
 
acff712
 
 
8699dd9
 
acff712
 
 
8699dd9
 
acff712
3674c04
acff712
 
 
 
 
 
 
3674c04
acff712
 
 
 
 
 
 
 
 
 
6ac5501
dd67f43
24342ea
d95e3f7
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import os
import base64
import requests
import gradio as gr
from huggingface_hub import InferenceClient
from dataclasses import dataclass
import pytesseract
from PIL import Image

@dataclass
class ChatMessage:
    """Custom ChatMessage class since huggingface_hub doesn't provide one"""
    role: str
    content: str

    def to_dict(self):
        """Converts ChatMessage to a dictionary for JSON serialization."""
        return {"role": self.role, "content": self.content}

class XylariaChat:
    def __init__(self):
        # Securely load HuggingFace token
        self.hf_token = os.getenv("HF_TOKEN")
        if not self.hf_token:
            raise ValueError("HuggingFace token not found in environment variables")

        # Initialize the inference client with the Qwen model
        self.client = InferenceClient(
            model="Qwen/QwQ-32B-Preview",  # Using the specified model
            api_key=self.hf_token
        )

        # Image captioning API setup
        self.image_api_url = "https://api-inference.huggingface.co/models/Salesforce/blip-image-captioning-large"
        self.image_api_headers = {"Authorization": f"Bearer {self.hf_token}"}

        # Initialize conversation history and persistent memory
        self.conversation_history = []
        self.persistent_memory = {}

        # System prompt with more detailed instructions
        self.system_prompt = """You are a helpful and harmless assistant. You are Xylaria developed by Sk Md Saad Amin. You should think step-by-step. You should respond to image questions"""

    def store_information(self, key, value):
        """Store important information in persistent memory"""
        self.persistent_memory[key] = value
        return f"Stored: {key} = {value}"

    def retrieve_information(self, key):
        """Retrieve information from persistent memory"""
        return self.persistent_memory.get(key, "No information found for this key.")

    def reset_conversation(self):
        """
        Completely reset the conversation history, persistent memory,
        and clear API-side memory
        """
        # Clear local memory
        self.conversation_history = []
        self.persistent_memory.clear()

        # Reinitialize the client (not strictly necessary for the API, but can help with local state)
        try:
            self.client = InferenceClient(
                model="Qwen/QwQ-32B-Preview",
                api_key=self.hf_token
            )
        except Exception as e:
            print(f"Error resetting API client: {e}")

        return None  # To clear the chatbot interface

    def caption_image(self, image):
        """
        Caption an uploaded image using Hugging Face API
        Args:
            image (str): Base64 encoded image or file path
        Returns:
            str: Image caption or error message
        """
        try:
            # If image is a file path, read and encode
            if isinstance(image, str) and os.path.isfile(image):
                with open(image, "rb") as f:
                    data = f.read()
            # If image is already base64 encoded
            elif isinstance(image, str):
                # Remove data URI prefix if present
                if image.startswith('data:image'):
                    image = image.split(',')[1]
                data = base64.b64decode(image)
            # If image is a file-like object (unlikely with Gradio, but good to have)
            else:
                data = image.read()

            # Send request to Hugging Face API
            response = requests.post(
                self.image_api_url,
                headers=self.image_api_headers,
                data=data
            )

            # Check response
            if response.status_code == 200:
                caption = response.json()[0].get('generated_text', 'No caption generated')
                return caption
            else:
                return f"Error captioning image: {response.status_code} - {response.text}"

        except Exception as e:
            return f"Error processing image: {str(e)}"

    def perform_math_ocr(self, image_path):
        """
        Perform OCR on an image and return the extracted text.

        Args:
            image_path (str): Path to the image file.

        Returns:
            str: Extracted text from the image, or an error message.
        """
        try:
            # Open the image using Pillow library
            img = Image.open(image_path)

            # Use Tesseract to do OCR on the image
            text = pytesseract.image_to_string(img)

            # Remove leading/trailing whitespace and return
            return text.strip()

        except Exception as e:
            return f"Error during Math OCR: {e}"
        
    def get_response(self, user_input, image=None):
        """
        Generate a response using chat completions with improved error handling
        Args:
            user_input (str): User's message
            image (optional): Uploaded image
        Returns:
            Stream of chat completions or error message
        """
        try:
            # Prepare messages with conversation context and persistent memory
            messages = []

            # Add system prompt as first message
            messages.append(ChatMessage(
                role="system",
                content=self.system_prompt
            ).to_dict())

            # Add persistent memory context if available
            if self.persistent_memory:
                memory_context = "Remembered Information:\n" + "\n".join(
                    [f"{k}: {v}" for k, v in self.persistent_memory.items()]
                )
                messages.append(ChatMessage(
                    role="system",
                    content=memory_context
                ).to_dict())

            # Convert existing conversation history to ChatMessage objects and then to dictionaries
            for msg in self.conversation_history:
                messages.append(ChatMessage(
                    role=msg['role'],
                    content=msg['content']
                ).to_dict())

            # Process image if uploaded
            if image:
                image_caption = self.caption_image(image)
                user_input = f"Image description: {image_caption}\n\nUser's message: {user_input}"

            # Add user input
            messages.append(ChatMessage(
                role="user",
                content=user_input
            ).to_dict())

            # Calculate available tokens
            input_tokens = sum(len(msg['content'].split()) for msg in messages)
            max_new_tokens = 16384 - input_tokens - 50 # Reserve some tokens for safety

            # Limit max_new_tokens to prevent exceeding the total limit
            max_new_tokens = min(max_new_tokens, 10020)

            # Generate response with streaming
            stream = self.client.chat_completion(
                messages=messages,
                model="Qwen/QwQ-32B-Preview",
                temperature=0.7,
                max_tokens=max_new_tokens,
                top_p=0.9,
                stream=True
            )
            
            return stream
        
        except Exception as e:
            print(f"Detailed error in get_response: {e}")
            return f"Error generating response: {str(e)}"

    def messages_to_prompt(self, messages):
        """
        Convert a list of ChatMessage dictionaries to a single prompt string.
        
        This is a simple implementation and you might need to adjust it 
        based on the specific requirements of the model you are using.
        """
        prompt = ""
        for msg in messages:
            if msg["role"] == "system":
                prompt += f"<|system|>\n{msg['content']}<|end|>\n"
            elif msg["role"] == "user":
                prompt += f"<|user|>\n{msg['content']}<|end|>\n"
            elif msg["role"] == "assistant":
                prompt += f"<|assistant|>\n{msg['content']}<|end|>\n"
        prompt += "<|assistant|>\n"  # Start of assistant's turn
        return prompt
        
    
    def create_interface(self):
        def streaming_response(message, chat_history, image_filepath, math_ocr_image_path):
            
            ocr_text = ""
            if math_ocr_image_path:
                ocr_text = self.perform_math_ocr(math_ocr_image_path)
                if ocr_text.startswith("Error"):
                    # Handle OCR error
                    updated_history = chat_history + [[message, ocr_text]]
                    yield "", updated_history, None, None
                    return
                else:
                    message = f"Math OCR Result: {ocr_text}\n\nUser's message: {message}"

            # Check if an image was actually uploaded
            if image_filepath:
                response_stream = self.get_response(message, image_filepath)
            else:
                response_stream = self.get_response(message)
                

            # Handle errors in get_response
            if isinstance(response_stream, str):
                # Return immediately with the error message
                updated_history = chat_history + [[message, response_stream]]
                yield "", updated_history, None, None
                return

            # Prepare for streaming response
            full_response = ""
            updated_history = chat_history + [[message, ""]]

            # Streaming output
            try:
                for chunk in response_stream:
                    if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content:
                        chunk_content = chunk.choices[0].delta.content
                        full_response += chunk_content
                        
                        # Update the last message in chat history with partial response
                        updated_history[-1][1] = full_response
                        yield "", updated_history, None, None
            except Exception as e:
                print(f"Streaming error: {e}")
                # Display error in the chat interface
                updated_history[-1][1] = f"Error during response: {e}"
                yield "", updated_history, None, None
                return

            # Update conversation history
            self.conversation_history.append(
                {"role": "user", "content": message}
            )
            self.conversation_history.append(
                {"role": "assistant", "content": full_response}
            )

            # Limit conversation history
            if len(self.conversation_history) > 10:
                self.conversation_history = self.conversation_history[-10:]

        # Custom CSS for Inter font and improved styling
        custom_css = """
        @import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
        body, .gradio-container {
            font-family: 'Inter', sans-serif !important;
        }
        .chatbot-container .message {
            font-family: 'Inter', sans-serif !important;
        }
        .gradio-container input,
        .gradio-container textarea,
        .gradio-container button {
            font-family: 'Inter', sans-serif !important;
        }
        /* Image Upload Styling */
        .image-container {
            border: 1px solid #ccc;
            border-radius: 8px;
            padding: 10px;
            margin-bottom: 10px;
            display: flex;
            flex-direction: column;
            align-items: center;
            gap: 10px;
            background-color: #f8f8f8;
        }
        .image-preview {
            max-width: 200px;
            max-height: 200px;
            border-radius: 8px;
        }
        .image-buttons {
            display: flex;
            gap: 10px;
        }
        .image-buttons button {
            padding: 8px 15px;
            border-radius: 5px;
            background-color: #4CAF50;
            color: white;
            border: none;
            cursor: pointer;
        }
        .image-buttons button:hover {
            background-color: #367c39;
        }
        """

        with gr.Blocks(theme='soft', css=custom_css) as demo:
            # Chat interface with improved styling
            with gr.Column():
                chatbot = gr.Chatbot(
                    label="Xylaria 1.5 Senoa (EXPERIMENTAL)",
                    height=500,
                    show_copy_button=True,
                )

                # Enhanced Image Upload Section
                with gr.Accordion("Image Input", open=False):
                    with gr.Column() as image_container:  # Use a Column for the image container
                        img = gr.Image(
                            sources=["upload", "webcam"],
                            type="filepath",
                            label="",  # Remove label as it's redundant
                            elem_classes="image-preview",  # Add a class for styling
                        )
                        with gr.Row():
                            clear_image_btn = gr.Button("Clear Image")
                
                with gr.Accordion("Math Input", open=False):
                    with gr.Column():
                        math_ocr_img = gr.Image(
                            sources=["upload", "webcam"],
                            type="filepath",
                            label="Upload Image for math",
                            elem_classes="image-preview"
                        )
                        with gr.Row():
                            clear_math_ocr_btn = gr.Button("Clear Math Image")

                # Input row with improved layout
                with gr.Row():
                    with gr.Column(scale=4):
                        txt = gr.Textbox(
                            show_label=False,
                            placeholder="Type your message...",
                            container=False
                        )
                    btn = gr.Button("Send", scale=1)

                # Clear history and memory buttons
                with gr.Row():
                    clear = gr.Button("Clear Conversation")
                    clear_memory = gr.Button("Clear Memory")

                # Clear image functionality
                clear_image_btn.click(
                    fn=lambda: None,
                    inputs=None,
                    outputs=[img],
                    queue=False
                )

                # Clear Math OCR image functionality
                clear_math_ocr_btn.click(
                    fn=lambda: None,
                    inputs=None,
                    outputs=[math_ocr_img],
                    queue=False
                )

                # Submit functionality with streaming and image support
                btn.click(
                    fn=streaming_response,
                    inputs=[txt, chatbot, img, math_ocr_img],
                    outputs=[txt, chatbot, img, math_ocr_img]
                )
                txt.submit(
                    fn=streaming_response,
                    inputs=[txt, chatbot, img, math_ocr_img],
                    outputs=[txt, chatbot, img, math_ocr_img]
                )

                # Clear conversation history
                clear.click(
                    fn=lambda: None,
                    inputs=None,
                    outputs=[chatbot],
                    queue=False
                )

                # Clear persistent memory and reset conversation
                clear_memory.click(
                    fn=self.reset_conversation,
                    inputs=None,
                    outputs=[chatbot],
                    queue=False
                )

                # Ensure memory is cleared when the interface is closed
                demo.load(self.reset_conversation, None, None)

        return demo

# Launch the interface
def main():
    chat = XylariaChat()
    interface = chat.create_interface()
    interface.launch(
        share=True,  # Optional: create a public link
        debug=True   # Show detailed errors
    )

if __name__ == "__main__":
    main()