import gradio as gr import torch from transformers import AutoConfig, AutoModelForCausalLM from janus.models import MultiModalityCausalLM, VLChatProcessor from PIL import Image import numpy as np import spaces # Load the model and processor model_path = "deepseek-ai/Janus-Pro-7B" config = AutoConfig.from_pretrained(model_path) language_config = config.language_config language_config._attn_implementation = 'eager' vl_gpt = AutoModelForCausalLM.from_pretrained( model_path, language_config=language_config, trust_remote_code=True ) vl_gpt = vl_gpt.to(torch.bfloat16).cuda() if torch.cuda.is_available() else vl_gpt.to(torch.float16) vl_chat_processor = VLChatProcessor.from_pretrained(model_path) tokenizer = vl_chat_processor.tokenizer cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu' # Helper functions def generate(input_ids, width, height, cfg_weight=5, temperature=1.0, parallel_size=5, patch_size=16): torch.cuda.empty_cache() tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device) for i in range(parallel_size * 2): tokens[i, :] = input_ids if i % 2 != 0: tokens[i, 1:-1] = vl_chat_processor.pad_id inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens) generated_tokens = torch.zeros((parallel_size, 576), dtype=torch.int).to(cuda_device) pkv = None for i in range(576): with torch.no_grad(): outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=pkv) pkv = outputs.past_key_values hidden_states = outputs.last_hidden_state logits = vl_gpt.gen_head(hidden_states[:, -1, :]) logit_cond = logits[0::2, :] logit_uncond = logits[1::2, :] logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond) probs = torch.softmax(logits / temperature, dim=-1) next_token = torch.multinomial(probs, num_samples=1) generated_tokens[:, i] = next_token.squeeze(dim=-1) next_token = torch.cat([next_token.unsqueeze(dim=1)] * 2, dim=1).view(-1) img_embeds = vl_gpt.prepare_gen_img_embeds(next_token) inputs_embeds = img_embeds.unsqueeze(dim=1) patches = vl_gpt.gen_vision_model.decode_code( generated_tokens.to(dtype=torch.int), shape=[parallel_size, 8, width // patch_size, height // patch_size] ) return patches def unpack(patches, width, height, parallel_size=5): # Detach the tensor before converting to numpy patches = patches.detach().to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1) patches = np.clip((patches + 1) / 2 * 255, 0, 255) images = [Image.fromarray(patches[i].astype(np.uint8)) for i in range(parallel_size)] return images @torch.inference_mode() @spaces.GPU(duration=120) def generate_image(prompt, seed=None, guidance=5, t2i_temperature=1.0): torch.cuda.empty_cache() if seed is not None: torch.manual_seed(seed) torch.cuda.manual_seed(seed) np.random.seed(seed) width, height, parallel_size = 384, 384, 5 messages = [ {'role': '<|User|>', 'content': prompt}, {'role': '<|Assistant|>', 'content': ''} ] text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts( conversations=messages, sft_format=vl_chat_processor.sft_format, system_prompt='' ) text += vl_chat_processor.image_start_tag input_ids = torch.LongTensor(tokenizer.encode(text)) patches = generate(input_ids, width, height, cfg_weight=guidance, temperature=t2i_temperature, parallel_size=parallel_size) return unpack(patches, width, height, parallel_size) # Gradio interface def create_interface(): with gr.Blocks() as demo: gr.Markdown(""" # Text-to-Image Generation with Janus-Pro-7B Welcome to the Janus-Pro-7B Text-to-Image Generator! This advanced AI model by DeepSeek offers state-of-the-art capabilities in generating images from textual descriptions. Leveraging a unified multimodal framework, Janus-Pro-7B excels in both understanding and generating content, providing detailed and accurate visual representations based on your prompts. **Key Features:** - **High-Quality Image Generation:** Produces stable and detailed images that often surpass those from other leading models. """) prompt_input = gr.Textbox(label="Prompt (describe the image)") # Option to toggle additional parameters with gr.Accordion("Advanced Parameters", open=False): seed_input = gr.Number(label="Seed (Optional)", value=12345, precision=0) guidance_slider = gr.Slider(label="CFG Guidance Weight", minimum=1, maximum=10, value=5, step=0.5) temperature_slider = gr.Slider(label="Temperature", minimum=0, maximum=1, value=1.0, step=0.05) generate_button = gr.Button("Generate Images") output_gallery = gr.Gallery(label="Generated Images", columns=2, height=300) generate_button.click( generate_image, inputs=[prompt_input, seed_input, guidance_slider, temperature_slider], outputs=output_gallery ) # Footer gr.Markdown("""

Created with ❤️ by janusai.pro

""") return demo demo = create_interface() demo.launch(share=True)