Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
from transformers import AutoConfig, AutoModelForCausalLM | |
from janus.models import MultiModalityCausalLM, VLChatProcessor | |
from PIL import Image | |
import numpy as np | |
import spaces | |
# Load the model and processor | |
model_path = "deepseek-ai/Janus-Pro-7B" | |
config = AutoConfig.from_pretrained(model_path) | |
language_config = config.language_config | |
language_config._attn_implementation = 'eager' | |
vl_gpt = AutoModelForCausalLM.from_pretrained( | |
model_path, | |
language_config=language_config, | |
trust_remote_code=True | |
) | |
vl_gpt = vl_gpt.to(torch.bfloat16).cuda() if torch.cuda.is_available() else vl_gpt.to(torch.float16) | |
vl_chat_processor = VLChatProcessor.from_pretrained(model_path) | |
tokenizer = vl_chat_processor.tokenizer | |
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
# Helper functions | |
def generate(input_ids, width, height, cfg_weight=5, temperature=1.0, parallel_size=5, patch_size=16): | |
torch.cuda.empty_cache() | |
tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device) | |
for i in range(parallel_size * 2): | |
tokens[i, :] = input_ids | |
if i % 2 != 0: | |
tokens[i, 1:-1] = vl_chat_processor.pad_id | |
inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens) | |
generated_tokens = torch.zeros((parallel_size, 576), dtype=torch.int).to(cuda_device) | |
pkv = None | |
for i in range(576): | |
with torch.no_grad(): | |
outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=pkv) | |
pkv = outputs.past_key_values | |
hidden_states = outputs.last_hidden_state | |
logits = vl_gpt.gen_head(hidden_states[:, -1, :]) | |
logit_cond = logits[0::2, :] | |
logit_uncond = logits[1::2, :] | |
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond) | |
probs = torch.softmax(logits / temperature, dim=-1) | |
next_token = torch.multinomial(probs, num_samples=1) | |
generated_tokens[:, i] = next_token.squeeze(dim=-1) | |
next_token = torch.cat([next_token.unsqueeze(dim=1)] * 2, dim=1).view(-1) | |
img_embeds = vl_gpt.prepare_gen_img_embeds(next_token) | |
inputs_embeds = img_embeds.unsqueeze(dim=1) | |
patches = vl_gpt.gen_vision_model.decode_code( | |
generated_tokens.to(dtype=torch.int), | |
shape=[parallel_size, 8, width // patch_size, height // patch_size] | |
) | |
return patches | |
def unpack(patches, width, height, parallel_size=5): | |
# Detach the tensor before converting to numpy | |
patches = patches.detach().to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1) | |
patches = np.clip((patches + 1) / 2 * 255, 0, 255) | |
images = [Image.fromarray(patches[i].astype(np.uint8)) for i in range(parallel_size)] | |
return images | |
def generate_image(prompt, seed=None, guidance=5, t2i_temperature=1.0): | |
torch.cuda.empty_cache() | |
if seed is not None: | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
np.random.seed(seed) | |
width, height, parallel_size = 384, 384, 5 | |
messages = [ | |
{'role': '<|User|>', 'content': prompt}, | |
{'role': '<|Assistant|>', 'content': ''} | |
] | |
text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts( | |
conversations=messages, sft_format=vl_chat_processor.sft_format, system_prompt='' | |
) | |
text += vl_chat_processor.image_start_tag | |
input_ids = torch.LongTensor(tokenizer.encode(text)) | |
patches = generate(input_ids, width, height, cfg_weight=guidance, temperature=t2i_temperature, parallel_size=parallel_size) | |
return unpack(patches, width, height, parallel_size) | |
# Gradio interface | |
def create_interface(): | |
with gr.Blocks() as demo: | |
gr.Markdown(""" | |
# Text-to-Image Generation with Janus-Pro-7B | |
Welcome to the Janus-Pro-7B Text-to-Image Generator! This advanced AI model by DeepSeek offers state-of-the-art capabilities in generating images from textual descriptions. Leveraging a unified multimodal framework, Janus-Pro-7B excels in both understanding and generating content, providing detailed and accurate visual representations based on your prompts. | |
**Key Features:** | |
- **High-Quality Image Generation:** Produces stable and detailed images that often surpass those from other leading models. | |
""") | |
prompt_input = gr.Textbox(label="Prompt (describe the image)") | |
# Option to toggle additional parameters | |
with gr.Accordion("Advanced Parameters", open=False): | |
seed_input = gr.Number(label="Seed (Optional)", value=12345, precision=0) | |
guidance_slider = gr.Slider(label="CFG Guidance Weight", minimum=1, maximum=10, value=5, step=0.5) | |
temperature_slider = gr.Slider(label="Temperature", minimum=0, maximum=1, value=1.0, step=0.05) | |
generate_button = gr.Button("Generate Images") | |
output_gallery = gr.Gallery(label="Generated Images", columns=2, height=300) | |
generate_button.click( | |
generate_image, | |
inputs=[prompt_input, seed_input, guidance_slider, temperature_slider], | |
outputs=output_gallery | |
) | |
# Footer | |
gr.Markdown(""" | |
<hr> | |
<p style="text-align: center; font-size: 0.9em;"> | |
Created with ❤️ by <a href="https://janusai.pro/" target="_blank">janusai.pro</a> | |
</p> | |
""") | |
return demo | |
demo = create_interface() | |
demo.launch(share=True) | |