Spaces:
Running
Running
static bool almost_equal(const double a, const double b, const double atol) { | |
return fabs(a - b) < atol; | |
} | |
constexpr int64_t ne_datapoint = 2; | |
constexpr int64_t ne_label = 1; | |
constexpr int64_t ndata = 6; | |
struct helper_ctx_data { | |
std::vector<ggml_opt_dataset_t> datasets_supervised; | |
std::vector<struct ggml_tensor *> data_batch; | |
std::vector<struct ggml_tensor *> labels_batch; | |
ggml_opt_dataset_t dataset_unsupervised; | |
struct ggml_context * ctx_static; | |
struct ggml_context * ctx_compute; | |
struct ggml_opt_params opt_params; | |
ggml_opt_context_t opt_ctx; | |
struct ggml_tensor * inputs; | |
struct ggml_tensor * weights; | |
struct ggml_tensor * outputs; | |
ggml_backend_buffer_t buf; | |
ggml_opt_result_t result; | |
ggml_opt_result_t result2; | |
}; | |
// These default values make it easier to check optimization results vs. expected values. | |
static ggml_opt_optimizer_params helper_get_test_opt_pars(void * userdata) { | |
ggml_opt_optimizer_params result = ggml_opt_get_default_optimizer_params(userdata); | |
result.adamw.alpha = 1.0f; | |
result.adamw.beta1 = 0.0f; | |
result.adamw.beta2 = 0.0f; | |
result.adamw.eps = 0.0f; | |
return result; | |
} | |
static helper_ctx_data helper_get_ctx_data( | |
ggml_backend_sched_t backend_sched, | |
ggml_backend_t backend, | |
const bool init_opt_ctx = true, | |
const bool optimizer_defaults = true, | |
int64_t nbatch_logical = 1, | |
int64_t nbatch_physical = 1, | |
enum ggml_opt_loss_type loss_type = GGML_OPT_LOSS_TYPE_SUM) { | |
std::vector<ggml_opt_dataset_t> datasets(ndata); | |
for (int64_t ndata_shard = 1; ndata_shard <= ndata; ++ndata_shard) { | |
ggml_opt_dataset_t dataset = ggml_opt_dataset_init(ne_datapoint, ne_label, ndata, ndata_shard); | |
float * data = ggml_get_data_f32(ggml_opt_dataset_data( dataset)); | |
float * labels = ggml_get_data_f32(ggml_opt_dataset_labels(dataset)); | |
for (int64_t idata = 0; idata < ndata; ++idata) { | |
for (int64_t id = 0; id < ne_datapoint; ++id) { | |
data[ idata*ne_datapoint + id] = 16*idata + id; | |
} | |
for (int64_t il = 0; il < ne_label; ++il) { | |
labels[idata*ne_label + il] = 16*(16*idata + il); | |
} | |
} | |
datasets[ndata_shard-1] = dataset; | |
} | |
ggml_opt_dataset_t dataset_unsupervised = ggml_opt_dataset_init(1, 0, ndata, /*ndata_shard =*/ 1); | |
float * data = ggml_get_data_f32(ggml_opt_dataset_data(dataset_unsupervised)); | |
for (int64_t idata = 0; idata < ndata; ++idata) { | |
data[idata] = idata; | |
} | |
struct ggml_context * ctx_static; | |
struct ggml_context * ctx_compute; | |
{ | |
struct ggml_init_params params = { | |
/*.mem_size =*/ (2*ndata + 2)*ggml_tensor_overhead(), | |
/*.mem_buffer =*/ nullptr, | |
/*.no_alloc =*/ true, | |
}; | |
ctx_static = ggml_init(params); | |
} | |
{ | |
struct ggml_init_params params = { | |
/*.mem_size =*/ GGML_DEFAULT_GRAPH_SIZE*ggml_tensor_overhead() + 3*ggml_graph_overhead(), | |
/*.mem_buffer =*/ nullptr, | |
/*.no_alloc =*/ true, | |
}; | |
ctx_compute = ggml_init(params); | |
} | |
std::vector<struct ggml_tensor *> data_batch(ndata); | |
std::vector<struct ggml_tensor *> labels_batch(ndata); | |
for (int64_t ndata_batch = 1; ndata_batch <= ndata; ++ndata_batch) { | |
data_batch[ndata_batch-1] = ggml_new_tensor_1d(ctx_static, GGML_TYPE_F32, ndata_batch*ne_datapoint); | |
labels_batch[ndata_batch-1] = ggml_new_tensor_1d(ctx_static, GGML_TYPE_F32, ndata_batch*ne_label); | |
} | |
struct ggml_tensor * inputs = ggml_new_tensor_1d(ctx_static, GGML_TYPE_F32, nbatch_physical); | |
ggml_set_name(inputs, "inputs"); | |
struct ggml_tensor * weights = ggml_new_tensor_1d(ctx_static, GGML_TYPE_F32, 1); | |
ggml_set_name(weights, "weights"); | |
ggml_set_param(ctx_static, weights); | |
struct ggml_tensor * intermediary = ggml_add(ctx_compute, inputs, weights); | |
struct ggml_tensor * outputs = ggml_scale(ctx_compute, intermediary, 1.0f); | |
ggml_set_name(outputs, "outputs"); | |
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx_static, backend); | |
const float w0 = float(ndata)/2; | |
ggml_backend_tensor_set(weights, &w0, 0, sizeof(float)); | |
GGML_ASSERT(nbatch_logical % nbatch_physical == 0); | |
const int32_t opt_period = nbatch_logical / nbatch_physical; | |
struct ggml_opt_params opt_params = ggml_opt_default_params(backend_sched, ctx_compute, inputs, outputs, loss_type); | |
opt_params.opt_period = opt_period; | |
if (!optimizer_defaults) { | |
opt_params.get_opt_pars = helper_get_test_opt_pars; | |
} | |
ggml_opt_context_t opt_ctx = init_opt_ctx ? ggml_opt_init(opt_params) : nullptr; | |
ggml_opt_result_t result = ggml_opt_result_init(); | |
ggml_opt_result_t result2 = ggml_opt_result_init(); | |
return {datasets, data_batch, labels_batch, dataset_unsupervised, ctx_static, ctx_compute, opt_params, opt_ctx, inputs, weights, outputs, buf, result, result2}; | |
} | |
static void helper_free_ctx_data(struct helper_ctx_data ctx_data) { | |
ggml_opt_result_free(ctx_data.result); | |
ggml_opt_result_free(ctx_data.result2); | |
ggml_opt_free(ctx_data.opt_ctx); | |
ggml_backend_buffer_free(ctx_data.buf); | |
ggml_free(ctx_data.ctx_static); | |
ggml_free(ctx_data.ctx_compute); | |
for (ggml_opt_dataset_t dataset : ctx_data.datasets_supervised) { | |
ggml_opt_dataset_free(dataset); | |
} | |
ggml_opt_dataset_free(ctx_data.dataset_unsupervised); | |
} | |
static void helper_after_test( | |
const char * func, const bool high_level, const std::string options, | |
const std::string subtest, const bool subtest_ok, int & ntest, int & npass) { | |
printf(" %s(high_level=%s%s, subtest=%s): ", | |
func, high_level ? "yes" : "no", options.c_str(), subtest.c_str()); | |
if (subtest_ok) { | |
printf("\033[1;32mOK\033[0m\n"); | |
npass++; | |
} else { | |
printf("\033[1;31mFAIL\033[0m\n"); | |
} | |
ntest++; | |
} | |
static std::pair<int, int> test_dataset(ggml_backend_sched_t backend_sched, ggml_backend_t backend, const bool shuffle) { | |
int ntest = 0; | |
int npass = 0; | |
struct helper_ctx_data cd = helper_get_ctx_data(backend_sched, backend); | |
for (int64_t ndata_shard = 1; ndata_shard <= ndata; ++ndata_shard) { | |
ggml_opt_dataset_t dataset = cd.datasets_supervised[ndata_shard-1]; | |
if (shuffle) { | |
ggml_opt_dataset_shuffle(cd.opt_ctx, dataset, -1); | |
} | |
for (int64_t ndata_batch = 1; ndata_batch <= ndata; ++ndata_batch) { | |
if (ndata_batch % ndata_shard != 0) { | |
continue; | |
} | |
bool subtest_ok = true; | |
struct ggml_tensor * data_batch = cd.data_batch[ndata_batch-1]; | |
struct ggml_tensor * labels_batch = cd.labels_batch[ndata_batch-1]; | |
std::vector<float> data(ggml_nelements( data_batch)); | |
std::vector<float> labels(ggml_nelements(labels_batch)); | |
std::vector<int64_t> idata_shuffled; | |
const int64_t nbatches = ndata / ndata_batch; | |
for (int64_t ibatch = 0; ibatch < nbatches; ++ibatch) { | |
ggml_opt_dataset_get_batch(dataset, data_batch, labels_batch, ibatch); | |
ggml_backend_tensor_get( data_batch, data.data(), 0, ggml_nbytes( data_batch)); | |
ggml_backend_tensor_get(labels_batch, labels.data(), 0, ggml_nbytes(labels_batch)); | |
for (int64_t idata_batch = 0; idata_batch < ndata_batch; ++idata_batch) { | |
const int64_t idata = ibatch*ndata_batch + idata_batch; | |
const int64_t idata_found = data[idata_batch*ne_datapoint] / 16; | |
subtest_ok = subtest_ok && (shuffle || idata_found == idata); | |
idata_shuffled.push_back(idata_found); | |
for (int64_t id = 0; id < ne_datapoint; ++id) { | |
if (data[ idata_batch*ne_datapoint + id] != 16*idata_found + id) { | |
subtest_ok = false; | |
} | |
} | |
for (int64_t il = 0; il < ne_label; ++il) { | |
if (labels[idata_batch*ne_label + il] != 16*(16*idata_found + il)) { | |
subtest_ok = false; | |
} | |
} | |
} | |
} | |
if (!shuffle || ndata % ndata_batch == 0) { | |
const int ndata_max = (ndata / ndata_batch) * ndata_batch; | |
for (int64_t idata = 0; subtest_ok && idata < ndata_max; ++idata) { | |
int ninstances = 0; | |
for (int64_t id : idata_shuffled) { | |
ninstances += id == idata; | |
} | |
if (ninstances != 1) { | |
subtest_ok = false; | |
} | |
} | |
} | |
printf(" %s(shuffle=%s, ndata_shard=%" PRId64 ", ndata_batch=%" PRId64 "): ", | |
__func__, shuffle ? "yes" : "no", ndata_shard, ndata_batch); | |
if (subtest_ok) { | |
printf("\033[1;32mOK\033[0m\n"); | |
npass++; | |
} else { | |
printf("\033[1;31mFAIL\033[0m\n"); | |
} | |
ntest++; | |
} | |
} | |
helper_free_ctx_data(cd); | |
return std::make_pair(npass, ntest); | |
} | |
static std::pair<int, int> test_grad(ggml_backend_sched_t backend_sched, ggml_backend_t backend) { | |
int ntest = 0; | |
int npass = 0; | |
struct helper_ctx_data cd = helper_get_ctx_data(backend_sched, backend, /*init_opt_ctx =*/ true, /*optimizer_defaults =*/ false, | |
/*nbatch_logical =*/ 999999, /*nbatch_physical =*/ 1); | |
std::vector<float> grad_history(ndata); | |
for (int64_t idata = 0; idata < ndata; ++idata) { | |
grad_history[idata] = NAN; | |
} | |
for (int idata = 0; idata < ndata; ++idata) { | |
const float idataf = idata; | |
ggml_backend_tensor_set(cd.inputs, &idataf, 0, ggml_nbytes(cd.inputs)); | |
ggml_opt_forward_backward(cd.opt_ctx, cd.result); | |
ggml_backend_tensor_get(ggml_opt_grad_acc(cd.opt_ctx, cd.weights), grad_history.data() + idata, 0, sizeof(float)); | |
} | |
{ | |
bool subtest_ok = true; | |
for (int idata = 0; idata < ndata; ++idata) { | |
if (grad_history[idata] != idata + 1) { | |
subtest_ok = false; | |
} | |
} | |
printf(" %s(): ", __func__); | |
if (subtest_ok) { | |
printf("\033[1;32mOK\033[0m\n"); | |
npass++; | |
} else { | |
printf("\033[1;31mFAIL\033[0m\n"); | |
} | |
ntest++; | |
} | |
helper_free_ctx_data(cd); | |
return std::make_pair(npass, ntest); | |
} | |
static void helper_after_test_forward_backward( | |
const char * func, const bool high_level, const bool shuffle, | |
const std::string subtest, const bool subtest_ok, int & ntest, int & npass) { | |
std::string options = ", shuffle="; | |
options += shuffle ? "yes" : "no"; | |
helper_after_test(func, high_level, options, subtest, subtest_ok, ntest, npass); | |
} | |
static std::pair<int, int> test_forward_backward( | |
ggml_backend_sched_t backend_sched, ggml_backend_t backend, const bool high_level, const bool shuffle) { | |
int ntest = 0; | |
int npass = 0; | |
struct helper_ctx_data cd = helper_get_ctx_data(backend_sched, backend, /*init_opt_ctx =*/ true, /*optimizer_defaults =*/ false); | |
struct ggml_tensor * loss = ggml_opt_loss(cd.opt_ctx); | |
std::vector<float> loss_history(ndata); | |
for (int64_t idata = 0; idata < ndata; ++idata) { | |
loss_history[idata] = NAN; | |
} | |
{ | |
int64_t ndata; | |
ggml_opt_result_ndata(cd.result, &ndata); | |
double loss; | |
double loss_unc; | |
ggml_opt_result_loss(cd.result, &loss, &loss_unc); | |
double accuracy; | |
double accuracy_unc; | |
ggml_opt_result_accuracy(cd.result, &accuracy, &accuracy_unc); | |
const bool subtest_ok = ndata == 0 && loss == 0.0 && std::isnan(loss_unc) && std::isnan(accuracy) && std::isnan(accuracy_unc); | |
helper_after_test_forward_backward(__func__, high_level, shuffle, "results_initial", subtest_ok, ntest, npass); | |
} | |
if (high_level) { | |
ggml_opt_dataset_t dataset = cd.dataset_unsupervised; | |
if (shuffle) { | |
ggml_opt_dataset_shuffle(cd.opt_ctx, dataset, -1); | |
} | |
ggml_opt_epoch(cd.opt_ctx, dataset, nullptr, cd.result, 0, nullptr, nullptr); | |
} else { | |
for (int idata = 0; idata < ndata; ++idata) { | |
const float idataf = idata; | |
ggml_backend_tensor_set(cd.inputs, &idataf, 0, ggml_nbytes(cd.inputs)); | |
ggml_opt_forward(cd.opt_ctx, cd.result); | |
ggml_backend_tensor_get(loss, loss_history.data() + idata, 0, sizeof(float)); | |
} | |
} | |
{ | |
float weights; | |
ggml_backend_tensor_get(cd.weights, &weights, 0, sizeof(float)); | |
const bool subtest_ok = weights == ndata/2; | |
helper_after_test_forward_backward(__func__, high_level, shuffle, "weights_after_forward", subtest_ok, ntest, npass); | |
} | |
{ | |
int64_t ndata; | |
ggml_opt_result_ndata(cd.result, &ndata); | |
bool subtest_ok = ndata == 6; | |
double loss; | |
double loss_unc; | |
ggml_opt_result_loss(cd.result, &loss, &loss_unc); | |
subtest_ok = subtest_ok && loss == 33.0 && almost_equal(loss_unc, sqrt(3.5), 1e-10); | |
double accuracy; | |
double accuracy_unc; | |
ggml_opt_result_accuracy(cd.result, &accuracy, &accuracy_unc); | |
subtest_ok = subtest_ok && std::isnan(accuracy) && std::isnan(accuracy_unc); | |
helper_after_test_forward_backward(__func__, high_level, shuffle, "results_after_forward", subtest_ok, ntest, npass); | |
} | |
float w0; | |
ggml_backend_tensor_get(cd.weights, &w0, 0, sizeof(float)); | |
for (int i = 0; i < 10; ++i) { | |
ggml_opt_forward_backward(cd.opt_ctx, nullptr); | |
} | |
ggml_backend_tensor_set(cd.weights, &w0, 0, sizeof(float)); | |
ggml_opt_reset(cd.opt_ctx, /*optimizer =*/ false); | |
ggml_opt_result_reset(cd.result); | |
for (int64_t idata = 0; idata < ndata; ++idata) { | |
loss_history[idata] = NAN; | |
} | |
if (high_level) { | |
ggml_opt_dataset_t dataset = cd.dataset_unsupervised; | |
if (shuffle) { | |
ggml_opt_dataset_shuffle(cd.opt_ctx, dataset, -1); | |
} | |
ggml_opt_epoch(cd.opt_ctx, dataset, cd.result, nullptr, ndata, nullptr, nullptr); | |
} else { | |
for (int idata = 0; idata < ndata; ++idata) { | |
const float idataf = idata; | |
ggml_backend_tensor_set(cd.inputs, &idataf, 0, ggml_nbytes(cd.inputs)); | |
ggml_opt_forward_backward(cd.opt_ctx, cd.result); | |
ggml_backend_tensor_get(loss, loss_history.data() + idata, 0, sizeof(float)); | |
} | |
} | |
{ | |
float weights; | |
ggml_backend_tensor_get(cd.weights, &weights, 0, sizeof(float)); | |
const bool subtest_ok = weights == -ndata/2; | |
helper_after_test_forward_backward(__func__, high_level, shuffle, "weights_after_forward_backward", subtest_ok, ntest, npass); | |
} | |
{ | |
int64_t ndata; | |
ggml_opt_result_ndata(cd.result, &ndata); | |
bool subtest_ok = ndata == 6; | |
double loss; | |
double loss_unc; | |
ggml_opt_result_loss(cd.result, &loss, &loss_unc); | |
subtest_ok = subtest_ok && loss == 18.0 && (shuffle || loss_unc == 0.0); | |
double accuracy; | |
double accuracy_unc; | |
ggml_opt_result_accuracy(cd.result, &accuracy, &accuracy_unc); | |
subtest_ok = subtest_ok && std::isnan(accuracy) && std::isnan(accuracy_unc); | |
helper_after_test_forward_backward(__func__, high_level, shuffle, "result_after_forward_backward", subtest_ok, ntest, npass); | |
} | |
helper_free_ctx_data(cd); | |
return std::make_pair(npass, ntest); | |
} | |
static std::pair<int, int> test_epoch_vs_fit(ggml_backend_sched_t backend_sched, ggml_backend_t backend) { | |
int ntest = 0; | |
int npass = 0; | |
float weights_epoch; | |
float weights_fit; | |
{ | |
struct helper_ctx_data cd = helper_get_ctx_data(backend_sched, backend, /*init_opt_ctx =*/ true); | |
ggml_opt_dataset_t dataset = cd.dataset_unsupervised; | |
ggml_opt_dataset_shuffle(cd.opt_ctx, dataset, -1); | |
ggml_opt_epoch(cd.opt_ctx, dataset, cd.result, nullptr, ndata, nullptr, nullptr); | |
ggml_backend_tensor_get(cd.weights, &weights_epoch, 0, ggml_nbytes(cd.weights)); | |
helper_free_ctx_data(cd); | |
} | |
{ | |
struct helper_ctx_data cd = helper_get_ctx_data(backend_sched, backend, /*init_opt_ctx =*/ false); | |
ggml_opt_dataset_t dataset = cd.dataset_unsupervised; | |
ggml_opt_fit(backend_sched, cd.ctx_compute, cd.inputs, cd.outputs, dataset, | |
GGML_OPT_LOSS_TYPE_SUM, ggml_opt_get_default_optimizer_params, 1, 1, 0.0f, true); | |
ggml_backend_tensor_get(cd.weights, &weights_fit, 0, ggml_nbytes(cd.weights)); | |
helper_free_ctx_data(cd); | |
} | |
const bool subtest_ok = weights_epoch == weights_fit; | |
printf(" %s(): ", __func__); | |
if (subtest_ok) { | |
printf("\033[1;32mOK\033[0m\n"); | |
npass++; | |
} else { | |
printf("\033[1;31mFAIL\033[0m\n"); | |
} | |
ntest++; | |
return std::make_pair(npass, ntest); | |
} | |
static void helper_after_test_idata_split( | |
const char * func, const bool high_level, const int epoch, | |
const std::string subtest, const bool subtest_ok, int & ntest, int & npass) { | |
std::string options = ", epoch="; | |
options += std::to_string(epoch); | |
helper_after_test(func, high_level, options, subtest, subtest_ok, ntest, npass); | |
} | |
static std::pair<int, int> test_idata_split(ggml_backend_sched_t backend_sched, ggml_backend_t backend, const bool high_level) { | |
int ntest = 0; | |
int npass = 0; | |
struct helper_ctx_data cd = helper_get_ctx_data(backend_sched, backend, /*init_opt_ctx =*/ true, /*optimizer_defaults =*/ false); | |
struct ggml_tensor * loss = ggml_opt_loss(cd.opt_ctx); | |
const int idata_split = ndata * 2/3; | |
std::vector<float> loss_history(ndata); | |
for (int64_t idata = 0; idata < ndata; ++idata) { | |
loss_history[idata] = NAN; | |
} | |
for (int epoch = 1; epoch <= 4; ++epoch) { | |
if (high_level) { | |
ggml_opt_epoch(cd.opt_ctx, cd.dataset_unsupervised, cd.result, cd.result2, idata_split, nullptr, nullptr); | |
} else { | |
int idata = 0; | |
for (; idata < idata_split; ++idata) { | |
const float idataf = idata; | |
ggml_backend_tensor_set(cd.inputs, &idataf, 0, ggml_nbytes(cd.inputs)); | |
ggml_opt_forward_backward(cd.opt_ctx, cd.result); | |
ggml_backend_tensor_get(loss, loss_history.data() + idata, 0, sizeof(float)); | |
} | |
for (; idata < ndata; ++idata) { | |
const float idataf = idata; | |
ggml_backend_tensor_set(cd.inputs, &idataf, 0, ggml_nbytes(cd.inputs)); | |
ggml_opt_forward(cd.opt_ctx, cd.result2); | |
ggml_backend_tensor_get(loss, loss_history.data() + idata, 0, sizeof(float)); | |
} | |
} | |
{ | |
float weights; | |
ggml_backend_tensor_get(cd.weights, &weights, 0, sizeof(float)); | |
const bool subtest_ok = weights == ndata/2 - epoch*idata_split; | |
helper_after_test_idata_split(__func__, high_level, epoch, "weights", subtest_ok, ntest, npass); | |
} | |
{ | |
int64_t ndata_result; | |
ggml_opt_result_ndata(cd.result, &ndata_result); | |
bool subtest_ok = ndata_result == idata_split; | |
double loss; | |
double loss_unc; | |
ggml_opt_result_loss(cd.result, &loss, &loss_unc); | |
subtest_ok = subtest_ok && loss == 28.0 - epoch*16.0 && loss_unc == 0.0; | |
double accuracy; | |
double accuracy_unc; | |
ggml_opt_result_accuracy(cd.result, &accuracy, &accuracy_unc); | |
subtest_ok = subtest_ok && std::isnan(accuracy) && std::isnan(accuracy_unc); | |
helper_after_test_idata_split(__func__, high_level, epoch, "results_backward", subtest_ok, ntest, npass); | |
} | |
{ | |
int64_t ndata_result; | |
ggml_opt_result_ndata(cd.result2, &ndata_result); | |
bool subtest_ok = ndata_result == ndata - idata_split; | |
double loss; | |
double loss_unc; | |
ggml_opt_result_loss(cd.result2, &loss, &loss_unc); | |
subtest_ok = subtest_ok && loss == 15.0 - epoch*8 && almost_equal(loss_unc, sqrt(0.5), 1e-10); | |
double accuracy; | |
double accuracy_unc; | |
ggml_opt_result_accuracy(cd.result2, &accuracy, &accuracy_unc); | |
subtest_ok = subtest_ok && std::isnan(accuracy) && std::isnan(accuracy_unc); | |
helper_after_test_idata_split(__func__, high_level, epoch, "results_forward", subtest_ok, ntest, npass); | |
} | |
ggml_opt_result_reset(cd.result); | |
ggml_opt_result_reset(cd.result2); | |
} | |
helper_free_ctx_data(cd); | |
return std::make_pair(npass, ntest); | |
} | |
static void helper_after_test_gradient_accumulation( | |
const char * func, const int nbatch_physical, const enum ggml_opt_loss_type loss_type, const int epoch, | |
const std::string subtest, const bool subtest_ok, int & ntest, int & npass) { | |
std::string options = ", nbatch_physical="; | |
options += std::to_string(nbatch_physical); | |
options += ", loss_type="; | |
options += loss_type == GGML_OPT_LOSS_TYPE_MEAN ? "mean" : "sum"; | |
options += ", epoch="; | |
options += std::to_string(epoch); | |
helper_after_test(func, false, options, subtest, subtest_ok, ntest, npass); | |
} | |
static std::pair<int, int> test_gradient_accumulation( | |
ggml_backend_sched_t backend_sched, ggml_backend_t backend, const int32_t nbatch_physical, const enum ggml_opt_loss_type loss_type) { | |
int ntest = 0; | |
int npass = 0; | |
struct helper_ctx_data cd = helper_get_ctx_data( | |
backend_sched, backend, /*init_opt_ctx =*/ true, /*optimizer_defaults =*/ false, /*nbatch_logical =*/ 6, nbatch_physical, loss_type); | |
struct ggml_tensor * loss = ggml_opt_loss(cd.opt_ctx); | |
std::vector<float> grad_history(ndata); | |
for (int64_t idata = 0; idata < ndata; ++idata) { | |
grad_history[idata] = NAN; | |
} | |
for (int epoch = 1; epoch <= 4; ++epoch) { | |
if (nbatch_physical == 1) { | |
for (int idata = 0; idata < ndata; ++idata) { | |
const float idataf = idata; | |
ggml_backend_tensor_set(cd.inputs, &idataf, 0, 1*sizeof(float)); | |
ggml_opt_forward_backward(cd.opt_ctx, cd.result); | |
ggml_backend_tensor_get(ggml_opt_grad_acc(cd.opt_ctx, cd.weights), grad_history.data() + idata, 0, 1*sizeof(float)); | |
} | |
} else if (nbatch_physical == 2) { | |
for (int idata = 0; idata < ndata; idata += 2) { | |
const float idataf[2] = {float(idata + 0), float(idata + 1)}; | |
ggml_backend_tensor_set(cd.inputs, idataf, 0, 2*sizeof(float)); | |
ggml_opt_forward_backward(cd.opt_ctx, cd.result); | |
grad_history[idata + 0] = 0.0f; | |
ggml_backend_tensor_get(ggml_opt_grad_acc(cd.opt_ctx, cd.weights), grad_history.data() + idata + 1, 0, 1*sizeof(float)); | |
} | |
} else { | |
GGML_ASSERT(false); | |
} | |
{ | |
GGML_ASSERT(ndata == 6); | |
constexpr double atol = 1e-6; | |
bool subtest_ok = true; | |
if (loss_type == GGML_OPT_LOSS_TYPE_SUM) { | |
if (nbatch_physical == 1) { | |
subtest_ok = subtest_ok && almost_equal(grad_history[0], 1.0, atol); | |
subtest_ok = subtest_ok && almost_equal(grad_history[2], 3.0, atol); | |
subtest_ok = subtest_ok && almost_equal(grad_history[4], 5.0, atol); | |
} else { | |
subtest_ok = subtest_ok && almost_equal(grad_history[0], 0.0, atol); | |
subtest_ok = subtest_ok && almost_equal(grad_history[2], 0.0, atol); | |
subtest_ok = subtest_ok && almost_equal(grad_history[4], 0.0, atol); | |
} | |
subtest_ok = subtest_ok && almost_equal(grad_history[1], 2.0, atol); | |
subtest_ok = subtest_ok && almost_equal(grad_history[3], 4.0, atol); | |
subtest_ok = subtest_ok && almost_equal(grad_history[5], 0.0, atol); | |
} else if (loss_type == GGML_OPT_LOSS_TYPE_MEAN) { | |
if (nbatch_physical == 1) { | |
subtest_ok = subtest_ok && almost_equal(grad_history[0], 1.0/ndata, atol); | |
subtest_ok = subtest_ok && almost_equal(grad_history[2], 3.0/ndata, atol); | |
subtest_ok = subtest_ok && almost_equal(grad_history[4], 5.0/ndata, atol); | |
} else { | |
subtest_ok = subtest_ok && almost_equal(grad_history[0], 0.0/ndata, atol); | |
subtest_ok = subtest_ok && almost_equal(grad_history[2], 0.0/ndata, atol); | |
subtest_ok = subtest_ok && almost_equal(grad_history[4], 0.0/ndata, atol); | |
} | |
subtest_ok = subtest_ok && almost_equal(grad_history[1], 2.0/ndata, atol); | |
subtest_ok = subtest_ok && almost_equal(grad_history[3], 4.0/ndata, atol); | |
subtest_ok = subtest_ok && almost_equal(grad_history[5], 0.0/ndata, atol); | |
} else { | |
GGML_ASSERT(false); | |
} | |
helper_after_test_gradient_accumulation(__func__, nbatch_physical, loss_type, epoch, "grads", subtest_ok, ntest, npass); | |
} | |
{ | |
float weights; | |
ggml_backend_tensor_get(cd.weights, &weights, 0, sizeof(float)); | |
const bool subtest_ok = weights == (ndata/2) - epoch; | |
helper_after_test_gradient_accumulation(__func__, nbatch_physical, loss_type, epoch, "weights", subtest_ok, ntest, npass); | |
} | |
{ | |
int64_t ndata_result; | |
ggml_opt_result_ndata(cd.result, &ndata_result); | |
bool subtest_ok = ndata_result == ndata/nbatch_physical; | |
double loss; | |
ggml_opt_result_loss(cd.result, &loss, /*loss_unc =*/ nullptr); | |
if (loss_type == GGML_OPT_LOSS_TYPE_SUM) { | |
subtest_ok = subtest_ok && loss == (39.0 - epoch*6.0); | |
} else if (loss_type == GGML_OPT_LOSS_TYPE_MEAN) { | |
subtest_ok = subtest_ok && almost_equal(loss, (39.0 - epoch*6.0) / ndata, 1e-6); | |
} else { | |
GGML_ASSERT(false); | |
} | |
double accuracy; | |
double accuracy_unc; | |
ggml_opt_result_accuracy(cd.result, &accuracy, &accuracy_unc); | |
subtest_ok = subtest_ok && std::isnan(accuracy) && std::isnan(accuracy_unc); | |
helper_after_test_gradient_accumulation(__func__, nbatch_physical, loss_type, epoch, "results", subtest_ok, ntest, npass); | |
} | |
ggml_opt_result_reset(cd.result); | |
} | |
helper_free_ctx_data(cd); | |
return std::make_pair(npass, ntest); | |
} | |
static ggml_opt_optimizer_params helper_get_regression_opt_pars(void * userdata) { | |
ggml_opt_optimizer_params result = ggml_opt_get_default_optimizer_params(userdata); | |
result.adamw.alpha = 0.1f; | |
return result; | |
} | |
static std::pair<int, int> test_regression(ggml_backend_sched_t backend_sched, ggml_backend_t backend) { | |
int ntest = 0; | |
int npass = 0; | |
// Test for simple regression with f(x) = a*x + b | |
constexpr int64_t ndata_regression = 201; | |
constexpr float a_true = 1.2f; | |
constexpr float b_true = 3.4f; | |
std::mt19937 gen(12345); | |
std::normal_distribution<float> nd{0.0f, 0.1f}; | |
ggml_opt_dataset_t dataset = ggml_opt_dataset_init(1, 1, ndata_regression, ndata_regression); | |
float * data = ggml_get_data_f32(ggml_opt_dataset_data( dataset)); | |
float * labels = ggml_get_data_f32(ggml_opt_dataset_labels(dataset)); | |
constexpr float x_min = -100.0f; | |
constexpr float x_max = 100.0f; | |
for (int64_t idata = 0; idata < ndata_regression; ++idata) { | |
const float x = x_min + (x_max - x_min) * idata/(ndata_regression-1); | |
const float y = a_true*x + b_true + nd(gen); | |
data[idata] = x; | |
labels[idata] = y; | |
} | |
struct ggml_context * ctx_static; | |
struct ggml_context * ctx_compute; | |
{ | |
struct ggml_init_params params = { | |
/*.mem_size =*/ 3*ggml_tensor_overhead(), | |
/*.mem_buffer =*/ nullptr, | |
/*.no_alloc =*/ true, | |
}; | |
ctx_static = ggml_init(params); | |
} | |
{ | |
struct ggml_init_params params = { | |
/*.mem_size =*/ GGML_DEFAULT_GRAPH_SIZE*ggml_tensor_overhead() + 3*ggml_graph_overhead(), | |
/*.mem_buffer =*/ nullptr, | |
/*.no_alloc =*/ true, | |
}; | |
ctx_compute = ggml_init(params); | |
} | |
// The first dimension is the dimension of the datapoints, the second dimension is the number of datapoints. | |
struct ggml_tensor * x = ggml_new_tensor_2d(ctx_static, GGML_TYPE_F32, 1, ndata_regression); | |
ggml_set_name(x, "x"); | |
struct ggml_tensor * a = ggml_new_tensor_1d(ctx_static, GGML_TYPE_F32, 1); | |
ggml_set_name(a, "a"); | |
ggml_set_param(ctx_static, a); | |
struct ggml_tensor * b = ggml_new_tensor_1d(ctx_static, GGML_TYPE_F32, 1); | |
ggml_set_name(b, "b"); | |
ggml_set_param(ctx_static, b); | |
struct ggml_tensor * f = ggml_add(ctx_compute, ggml_mul(ctx_compute, x, a), b); | |
ggml_set_name(f, "f"); | |
ggml_set_param(ctx_static, f); | |
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx_static, backend); | |
const float a0 = 1.0f; | |
const float b0 = 3.0f; | |
ggml_backend_tensor_set(a, &a0, 0, sizeof(float)); | |
ggml_backend_tensor_set(b, &b0, 0, sizeof(float)); | |
ggml_opt_fit(backend_sched, ctx_compute, x, f, dataset, GGML_OPT_LOSS_TYPE_MEAN_SQUARED_ERROR, | |
helper_get_regression_opt_pars, 100, ndata_regression, 0.0f, true); | |
{ | |
float a_fit; | |
ggml_backend_tensor_get(a, &a_fit, 0, sizeof(float)); | |
float b_fit; | |
ggml_backend_tensor_get(b, &b_fit, 0, sizeof(float)); | |
const bool subtest_ok = almost_equal(a_fit, a_true, 1e-2) && almost_equal(b_fit, b_true, 1e-2); | |
printf(" %s(subtest=weights): ", __func__); | |
if (subtest_ok) { | |
printf("\033[1;32mOK\033[0m\n"); | |
npass++; | |
} else { | |
printf("\033[1;31mFAIL\033[0m\n"); | |
} | |
ntest++; | |
} | |
ggml_backend_buffer_free(buf); | |
ggml_free(ctx_static); | |
ggml_opt_dataset_free(dataset); | |
return std::make_pair(npass, ntest); | |
} | |
static std::pair<int, int> test_backend(ggml_backend_sched_t backend_sched, ggml_backend_t backend) { | |
int npass = 0; | |
int ntest = 0; | |
for (bool shuffle : {false, true}) { | |
std::pair<int, int> partial = test_dataset(backend_sched, backend, shuffle); | |
npass += partial.first; | |
ntest += partial.second; | |
} | |
{ | |
std::pair<int, int> partial = test_grad(backend_sched, backend); | |
npass += partial.first; | |
ntest += partial.second; | |
} | |
for (bool high_level : {false, true}){ | |
for (bool shuffle : {false, true}) { | |
if (!high_level && shuffle) { | |
continue; | |
} | |
std::pair<int, int> partial = test_forward_backward(backend_sched, backend, high_level, shuffle); | |
npass += partial.first; | |
ntest += partial.second; | |
} | |
} | |
{ | |
std::pair<int, int> partial = test_epoch_vs_fit(backend_sched, backend); | |
npass += partial.first; | |
ntest += partial.second; | |
} | |
for (bool high_level : {false, true}){ | |
std::pair<int, int> partial = test_idata_split(backend_sched, backend, high_level); | |
npass += partial.first; | |
ntest += partial.second; | |
} | |
for (int32_t nbatch_physical : {2, 1}) { | |
for (enum ggml_opt_loss_type loss_type : {GGML_OPT_LOSS_TYPE_SUM, GGML_OPT_LOSS_TYPE_MEAN}) { | |
std::pair<int, int> partial = test_gradient_accumulation(backend_sched, backend, nbatch_physical, loss_type); | |
npass += partial.first; | |
ntest += partial.second; | |
} | |
} | |
{ | |
std::pair<int, int> partial = test_regression(backend_sched, backend); | |
npass += partial.first; | |
ntest += partial.second; | |
} | |
return std::make_pair(npass, ntest); | |
} | |
int main(void) { | |
const size_t dev_count = ggml_backend_dev_count(); | |
printf("Testing %zu devices\n\n", dev_count); | |
size_t n_ok = 0; | |
std::vector<ggml_backend_dev_t> devs; | |
std::vector<ggml_backend_t> backends; | |
for (size_t i = 0; i < dev_count; ++i) { | |
devs.push_back(ggml_backend_dev_get(i)); | |
ggml_backend_t backend = ggml_backend_dev_init(devs[i], NULL); | |
GGML_ASSERT(backend != NULL); | |
if (ggml_backend_is_cpu(backend)) { | |
ggml_backend_cpu_set_n_threads(backend, std::thread::hardware_concurrency() / 2); | |
} | |
backends.push_back(backend); | |
} | |
for (size_t i = 0; i < dev_count; ++i) { | |
// Put the backend to be tested in front so that it's prioritized: | |
std::vector<ggml_backend_t> backends_modded = {backends[i]}; | |
backends_modded.insert(backends_modded.end(), backends.begin(), backends.end()); | |
ggml_backend_sched_t backend_sched = ggml_backend_sched_new( | |
backends_modded.data(), nullptr, backends_modded.size(), GGML_DEFAULT_GRAPH_SIZE, false); | |
printf("Backend %zu/%zu: %s\n", i + 1, dev_count, ggml_backend_dev_name(devs[i])); | |
printf(" Device description: %s\n", ggml_backend_dev_description(devs[i])); | |
size_t free, total; // NOLINT | |
ggml_backend_dev_memory(devs[i], &free, &total); | |
printf(" Device memory: %zu MB (%zu MB free)\n", total / 1024 / 1024, free / 1024 / 1024); | |
printf("\n"); | |
std::pair<int, int> result = test_backend(backend_sched, backends[i]); | |
printf(" %d/%d tests passed\n", result.first, result.second); | |
printf(" Backend %s: ", ggml_backend_name(backends[i])); | |
if (result.first == result.second) { | |
printf("\033[1;32mOK\033[0m\n"); | |
n_ok++; | |
} else { | |
printf("\033[1;31mFAIL\033[0m\n"); | |
} | |
printf("\n"); | |
ggml_backend_sched_free(backend_sched); | |
} | |
for (ggml_backend_t backend : backends) { | |
ggml_backend_free(backend); | |
} | |
printf("%zu/%zu backends passed\n", n_ok, dev_count); | |
if (n_ok != dev_count) { | |
printf("\033[1;31mFAIL\033[0m\n"); | |
return 1; | |
} | |
printf("\033[1;32mOK\033[0m\n"); | |
return 0; | |
} | |