Spaces:
Running
Running
using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>; | |
enum llama_fver { | |
GGUF_FILE_VERSION_V1 = 1, | |
GGUF_FILE_VERSION_V2 = 2, | |
GGUF_FILE_VERSION_V3 = 3, | |
}; | |
const char * llama_file_version_name(llama_fver version); | |
struct llama_model_loader { | |
// Holds information on a model weight | |
struct llama_tensor_weight { | |
uint16_t idx; // source file index | |
size_t offs; // tensor data offset in the original file | |
ggml_tensor * tensor; | |
llama_tensor_weight(const llama_file * file, uint16_t idx, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) { | |
const int tensor_idx = gguf_find_tensor(gguf_ctx, ggml_get_name(tensor)); | |
if (tensor_idx < 0) { | |
throw std::runtime_error(format("tensor '%s' not found in the model", ggml_get_name(tensor))); | |
} | |
offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx); | |
if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size()) { | |
throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", ggml_get_name(tensor))); | |
} | |
} | |
}; | |
// custom comparator to sort weights more nicely by layer | |
struct weight_name_comparer { | |
bool operator()(const std::string & a, const std::string & b) const { | |
int a_layer = -1; | |
int b_layer = -1; | |
sscanf(a.c_str(), "blk.%d.", &a_layer); | |
sscanf(b.c_str(), "blk.%d.", &b_layer); | |
if (a_layer != b_layer) { | |
return a_layer < b_layer; | |
} | |
return a < b; | |
} | |
}; | |
static const int TENSOR_NOT_REQUIRED = 1; | |
static const int TENSOR_DUPLICATED = 2; | |
int n_kv = 0; | |
int n_tensors = 0; | |
int n_created = 0; | |
uint64_t n_elements = 0; | |
size_t n_bytes = 0; | |
bool use_mmap = false; | |
bool check_tensors; | |
llama_files files; | |
llama_ftype ftype; | |
llama_fver fver; | |
llama_mmaps mappings; | |
std::map<std::string, struct llama_tensor_weight, weight_name_comparer> weights_map; | |
std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides; | |
gguf_context_ptr meta; | |
std::vector<ggml_context_ptr> contexts; | |
std::string arch_name; | |
LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN); | |
size_t size_done = 0; | |
size_t size_data = 0; | |
std::vector<std::pair<size_t, size_t>> mmaps_used; | |
llama_model_loader( | |
const std::string & fname, | |
std::vector<std::string> & splits, // optional, only need if the split does not follow naming scheme | |
bool use_mmap, | |
bool check_tensors, | |
const struct llama_model_kv_override * param_overrides_p); | |
template<typename T> | |
typename std::enable_if<std::is_integral<T>::value, bool>::type | |
get_arr_n(const std::string & key, T & result, bool required = true); | |
template<typename T> | |
typename std::enable_if<std::is_integral<T>::value, bool>::type | |
get_arr_n(enum llm_kv kid, T & result, bool required = true); | |
template<typename T> | |
bool get_arr(const std::string & key, std::vector<T> & result, bool required = true); | |
template<typename T, size_t N_MAX> | |
bool get_arr(const std::string & key, std::array<T, N_MAX> & result, bool required = true); | |
template<typename T> | |
bool get_arr(enum llm_kv kid, T & result, bool required = true); | |
template<typename T> | |
bool get_key(const std::string & key, T & result, bool required = true); | |
template<typename T> | |
bool get_key(enum llm_kv kid, T & result, bool required = true); | |
template<typename T, size_t N_MAX> | |
bool get_key_or_arr(const std::string & key, std::array<T, N_MAX> & result, uint32_t n, bool required = true); | |
template<typename T> | |
bool get_key_or_arr(enum llm_kv kid, T & result, uint32_t n, bool required = true); | |
std::string get_arch_name() const; | |
enum llm_arch get_arch() const; | |
const llama_tensor_weight * get_weight(const char * name) const; | |
const llama_tensor_weight & require_weight(const char * name) const; | |
struct ggml_tensor * get_tensor_meta(const char * name) const; | |
struct ggml_tensor * require_tensor_meta(const std::string & name) const; | |
const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const; | |
struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::initializer_list<int64_t> & ne, int flags = 0); | |
struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::initializer_list<int64_t> & ne, size_t offset, bool required = true); | |
void done_getting_tensors() const; | |
void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr); | |
void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const; | |
// for backwards compatibility, does not support ggml-backend | |
void load_data_for(struct ggml_tensor * cur) const; | |
// Returns false if cancelled by progress_callback | |
bool load_all_data( | |
struct ggml_context * ctx, | |
llama_buf_map & bufs, | |
llama_mlocks * lmlocks, | |
llama_progress_callback progress_callback, | |
void * progress_callback_user_data); | |
std::string ftype_name() const; | |
void print_info() const; | |
}; | |