Spaces:
Running
Running
static const size_t kiB = 1024; | |
static const size_t MiB = 1024*kiB; | |
static const size_t GiB = 1024*MiB; | |
const char * llama_file_version_name(llama_fver version) { | |
switch (version) { | |
case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)"; | |
case GGUF_FILE_VERSION_V2: return "GGUF V2"; | |
case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)"; | |
} | |
return "unknown"; | |
} | |
static std::string llama_model_ftype_name(llama_ftype ftype) { | |
if (ftype & LLAMA_FTYPE_GUESSED) { | |
return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)"; | |
} | |
switch (ftype) { | |
case LLAMA_FTYPE_ALL_F32: return "all F32"; | |
case LLAMA_FTYPE_MOSTLY_F16: return "F16"; | |
case LLAMA_FTYPE_MOSTLY_BF16: return "BF16"; | |
case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0"; | |
case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1"; | |
case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0"; | |
case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1"; | |
case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0"; | |
case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium"; | |
case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small"; | |
case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small"; | |
case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium"; | |
case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large"; | |
case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small"; | |
case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium"; | |
case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small"; | |
case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium"; | |
case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K"; | |
case LLAMA_FTYPE_MOSTLY_TQ1_0: return "TQ1_0 - 1.69 bpw ternary"; | |
case LLAMA_FTYPE_MOSTLY_TQ2_0: return "TQ2_0 - 2.06 bpw ternary"; | |
case LLAMA_FTYPE_MOSTLY_IQ2_XXS: return "IQ2_XXS - 2.0625 bpw"; | |
case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw"; | |
case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw"; | |
case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw"; | |
case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw"; | |
case LLAMA_FTYPE_MOSTLY_IQ3_XXS: return "IQ3_XXS - 3.0625 bpw"; | |
case LLAMA_FTYPE_MOSTLY_IQ1_S: return "IQ1_S - 1.5625 bpw"; | |
case LLAMA_FTYPE_MOSTLY_IQ1_M: return "IQ1_M - 1.75 bpw"; | |
case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw"; | |
case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw"; | |
case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw"; | |
case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw"; | |
default: return "unknown, may not work"; | |
} | |
} | |
// return a list of splits for a given path | |
// for example, given "<name>-00002-of-00004.gguf", returns list of all 4 splits | |
static std::vector<std::string> llama_get_list_splits(const std::string & path, const int idx, const int n_split) { | |
std::vector<std::string> paths; | |
std::string split_prefix; | |
std::vector<char> buf(llama_path_max(), 0); | |
{ | |
int ret = llama_split_prefix(buf.data(), buf.size(), path.c_str(), idx, n_split); | |
if (!ret) { | |
throw std::runtime_error(format("invalid split file name: %s", path.c_str())); | |
} | |
split_prefix = std::string(buf.data(), ret); | |
} | |
if (split_prefix.empty()) { | |
throw std::runtime_error(format("invalid split file: %s", path.c_str())); | |
} | |
for (int idx = 0; idx < n_split; ++idx) { | |
int ret = llama_split_path(buf.data(), buf.size(), split_prefix.c_str(), idx, n_split); | |
paths.push_back(std::string(buf.data(), ret)); | |
} | |
return paths; | |
} | |
namespace GGUFMeta { | |
template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int64_t)> | |
struct GKV_Base_Type { | |
static constexpr gguf_type gt = gt_; | |
static T getter(const gguf_context * ctx, const int kid) { | |
return gfun(ctx, kid); | |
} | |
}; | |
template<typename T> struct GKV_Base; | |
template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {}; | |
template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {}; | |
template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {}; | |
template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {}; | |
template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {}; | |
template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {}; | |
template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {}; | |
template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {}; | |
template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {}; | |
template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {}; | |
template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {}; | |
template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {}; | |
template<> struct GKV_Base<std::string> { | |
static constexpr gguf_type gt = GGUF_TYPE_STRING; | |
static std::string getter(const gguf_context * ctx, const int kid) { | |
return gguf_get_val_str(ctx, kid); | |
} | |
}; | |
struct ArrayInfo { | |
const gguf_type gt; | |
const size_t length; | |
const void * data; | |
}; | |
template<> struct GKV_Base<ArrayInfo> { | |
public: | |
static constexpr gguf_type gt = GGUF_TYPE_ARRAY; | |
static ArrayInfo getter(const gguf_context *ctx, const int k) { | |
const enum gguf_type arr_type = gguf_get_arr_type(ctx, k); | |
return ArrayInfo { | |
arr_type, | |
size_t(gguf_get_arr_n(ctx, k)), | |
arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx, k), | |
}; | |
} | |
}; | |
template<typename T> | |
class GKV : public GKV_Base<T> { | |
GKV() = delete; | |
public: | |
static T get_kv(const gguf_context * ctx, const int k) { | |
const enum gguf_type kt = gguf_get_kv_type(ctx, k); | |
if (kt != GKV::gt) { | |
throw std::runtime_error(format("key %s has wrong type %s but expected type %s", | |
gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt))); | |
} | |
return GKV::getter(ctx, k); | |
} | |
static const char * override_type_to_str(const llama_model_kv_override_type ty) { | |
switch (ty) { | |
case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool"; | |
case LLAMA_KV_OVERRIDE_TYPE_INT: return "int"; | |
case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float"; | |
case LLAMA_KV_OVERRIDE_TYPE_STR: return "str"; | |
} | |
return "unknown"; | |
} | |
static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) { | |
if (!ovrd) { return false; } | |
if (ovrd->tag == expected_type) { | |
LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ", | |
__func__, override_type_to_str(ovrd->tag), ovrd->key); | |
switch (ovrd->tag) { | |
case LLAMA_KV_OVERRIDE_TYPE_BOOL: { | |
LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false"); | |
} break; | |
case LLAMA_KV_OVERRIDE_TYPE_INT: { | |
LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64); | |
} break; | |
case LLAMA_KV_OVERRIDE_TYPE_FLOAT: { | |
LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64); | |
} break; | |
case LLAMA_KV_OVERRIDE_TYPE_STR: { | |
LLAMA_LOG_INFO("%s\n", ovrd->val_str); | |
} break; | |
default: | |
// Shouldn't be possible to end up here, but just in case... | |
throw std::runtime_error( | |
format("Unsupported attempt to override %s type for metadata key %s\n", | |
override_type_to_str(ovrd->tag), ovrd->key)); | |
} | |
return true; | |
} | |
LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n", | |
__func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag)); | |
return false; | |
} | |
template<typename OT> | |
static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type | |
try_override(OT & target, const struct llama_model_kv_override * ovrd) { | |
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) { | |
target = ovrd->val_bool; | |
return true; | |
} | |
return false; | |
} | |
template<typename OT> | |
static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type | |
try_override(OT & target, const struct llama_model_kv_override * ovrd) { | |
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) { | |
target = ovrd->val_i64; | |
return true; | |
} | |
return false; | |
} | |
template<typename OT> | |
static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type | |
try_override(T & target, const struct llama_model_kv_override * ovrd) { | |
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) { | |
target = ovrd->val_f64; | |
return true; | |
} | |
return false; | |
} | |
template<typename OT> | |
static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type | |
try_override(T & target, const struct llama_model_kv_override * ovrd) { | |
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) { | |
target = ovrd->val_str; | |
return true; | |
} | |
return false; | |
} | |
static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) { | |
if (try_override<T>(target, ovrd)) { | |
return true; | |
} | |
if (k < 0) { return false; } | |
target = get_kv(ctx, k); | |
return true; | |
} | |
static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) { | |
return set(ctx, gguf_find_key(ctx, key), target, ovrd); | |
} | |
static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) { | |
return set(ctx, key.c_str(), target, ovrd); | |
} | |
}; | |
} | |
template<typename T> | |
typename std::enable_if<std::is_integral<T>::value, bool>::type | |
llama_model_loader::get_arr_n(const std::string & key, T & result, bool required) { | |
const int kid = gguf_find_key(meta.get(), key.c_str()); | |
if (kid < 0) { | |
if (required) { | |
throw std::runtime_error(format("key not found in model: %s", key.c_str())); | |
} | |
return false; | |
} | |
struct GGUFMeta::ArrayInfo arr_info = | |
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta.get(), kid); | |
result = arr_info.length; | |
return true; | |
} | |
template<typename T> | |
typename std::enable_if<std::is_integral<T>::value, bool>::type | |
llama_model_loader::get_arr_n(enum llm_kv kid, T & result, bool required) { | |
return get_arr_n(llm_kv(kid), result, required); | |
} | |
template bool llama_model_loader::get_arr_n(enum llm_kv kid, uint32_t & result, bool required); | |
template<typename T> | |
bool llama_model_loader::get_arr(const std::string & key, std::vector<T> & result, bool required) { | |
const int kid = gguf_find_key(meta.get(), key.c_str()); | |
if (kid < 0 || gguf_get_kv_type(meta.get(), kid) != GGUF_TYPE_ARRAY) { | |
if (required) { | |
throw std::runtime_error(format("array key not found in model: %s", key.c_str())); | |
} | |
return false; | |
} | |
struct GGUFMeta::ArrayInfo arr_info = | |
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta.get(), kid); | |
switch (arr_info.gt) { | |
case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break; | |
case GGUF_TYPE_INT32: GGML_ASSERT( | |
(std::is_same<T, int32_t>::value) || | |
(std::is_same<T, uint32_t>::value)); break; | |
default: | |
throw std::runtime_error(format("%s is not a float32, int32 array", key.c_str())); | |
} | |
result.resize(arr_info.length); | |
result.assign((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length); | |
return true; | |
} | |
template<typename T, size_t N_MAX> | |
bool llama_model_loader::get_arr(const std::string & key, std::array<T, N_MAX> & result, bool required) { | |
const int kid = gguf_find_key(meta.get(), key.c_str()); | |
if (kid < 0 || gguf_get_kv_type(meta.get(), kid) != GGUF_TYPE_ARRAY) { | |
if (required) { | |
throw std::runtime_error(format("array key not found in model: %s", key.c_str())); | |
} | |
return false; | |
} | |
struct GGUFMeta::ArrayInfo arr_info = | |
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta.get(), kid); | |
switch (arr_info.gt) { | |
case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break; | |
case GGUF_TYPE_INT32: GGML_ASSERT( | |
(std::is_same<T, int32_t>::value) || | |
(std::is_same<T, uint32_t>::value)); break; | |
default: | |
throw std::runtime_error(format("%s is not a float32, int32 array", key.c_str())); | |
} | |
if (arr_info.length > N_MAX) { | |
throw std::runtime_error(format("array length %u for key %s exceeds max %u", (uint32_t) arr_info.length, key.c_str(), (uint32_t) N_MAX)); | |
} | |
std::copy((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length, result.begin()); | |
return true; | |
} | |
template<typename T> | |
bool llama_model_loader::get_arr(enum llm_kv kid, T & result, bool required) { | |
return get_arr(llm_kv(kid), result, required); | |
} | |
template<typename T> | |
bool llama_model_loader::get_key(const std::string & key, T & result, bool required) { | |
auto it = kv_overrides.find(key); | |
const struct llama_model_kv_override * override = | |
it != kv_overrides.end() ? &it->second : nullptr; | |
const bool found = GGUFMeta::GKV<T>::set(meta.get(), key, result, override); | |
if (required && !found) { | |
throw std::runtime_error(format("key not found in model: %s", key.c_str())); | |
} | |
return found; | |
} | |
template<typename T> | |
bool llama_model_loader::get_key(enum llm_kv kid, T & result, bool required) { | |
return get_key(llm_kv(kid), result, required); | |
} | |
template bool llama_model_loader::get_key<bool> (enum llm_kv kid, bool & result, bool required); | |
template bool llama_model_loader::get_key<float> (enum llm_kv kid, float & result, bool required); | |
template bool llama_model_loader::get_key<uint32_t> (enum llm_kv kid, uint32_t & result, bool required); | |
template bool llama_model_loader::get_key<std::string>(enum llm_kv kid, std::string & result, bool required); | |
template<> | |
bool llama_model_loader::get_key(enum llm_kv kid, enum llama_pooling_type & result, bool required) { | |
uint32_t tmp; | |
const bool found = get_key(kid, tmp, required); | |
if (found) { | |
result = (enum llama_pooling_type) tmp; | |
} else { | |
result = LLAMA_POOLING_TYPE_UNSPECIFIED; | |
} | |
return found; | |
} | |
// get array of n <= N_MAX elements, or a single element repeated n times | |
template<typename T, size_t N_MAX> | |
bool llama_model_loader::get_key_or_arr(const std::string & key, std::array<T, N_MAX> & result, uint32_t n, bool required) { | |
const int kid = gguf_find_key(meta.get(), key.c_str()); | |
if (kid < 0) { | |
if (required) { | |
throw std::runtime_error(format("key not found in model: %s", key.c_str())); | |
} | |
return false; | |
} | |
if (n > N_MAX) { | |
throw std::runtime_error(format("n > N_MAX: %u > %u for key %s", (uint32_t) n, (uint32_t) N_MAX, key.c_str())); | |
} | |
if (gguf_get_kv_type(meta.get(), kid) == GGUF_TYPE_ARRAY) { | |
struct GGUFMeta::ArrayInfo arr_info = | |
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta.get(), kid); | |
if (n != arr_info.length) { | |
throw std::runtime_error(format("key %s has wrong array length; expected %u, got %u", key.c_str(), n, (uint32_t) arr_info.length)); | |
} | |
return get_arr(key, result, required); | |
} | |
T value; | |
bool ok = get_key(key, value, required); | |
if (!ok) { | |
return false; | |
} | |
for (uint32_t i = 0; i < n; i++) { | |
result[i] = value; | |
} | |
return true; | |
} | |
template<typename T> | |
bool llama_model_loader::get_key_or_arr(enum llm_kv kid, T & result, uint32_t n, bool required) { | |
return get_key_or_arr(llm_kv(kid), result, n, required); | |
} | |
// TODO: this is not very clever - figure out something better | |
template bool llama_model_loader::get_key_or_arr<std::array<int, 4>>(enum llm_kv kid, std::array<int, 4> & result, uint32_t n, bool required); | |
template bool llama_model_loader::get_key_or_arr<std::array<uint32_t, 512>>(enum llm_kv kid, std::array<uint32_t, 512> & result, uint32_t n, bool required); | |
llama_model_loader::llama_model_loader( | |
const std::string & fname, | |
std::vector<std::string> & splits, | |
bool use_mmap, | |
bool check_tensors, | |
const struct llama_model_kv_override * param_overrides_p) { | |
int trace = 0; | |
if (getenv("LLAMA_TRACE")) { | |
trace = atoi(getenv("LLAMA_TRACE")); | |
} | |
if (param_overrides_p != nullptr) { | |
for (const struct llama_model_kv_override * p = param_overrides_p; p->key[0] != 0; p++) { | |
kv_overrides.insert({std::string(p->key), *p}); | |
} | |
} | |
// Load the main GGUF | |
struct ggml_context * ctx = NULL; | |
struct gguf_init_params params = { | |
/*.no_alloc = */ true, | |
/*.ctx = */ &ctx, | |
}; | |
meta.reset(gguf_init_from_file(fname.c_str(), params)); | |
if (!meta) { | |
throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str())); | |
} | |
get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false); | |
llm_kv = LLM_KV(llm_arch_from_string(arch_name)); | |
files.emplace_back(new llama_file(fname.c_str(), "rb")); | |
contexts.emplace_back(ctx); | |
// Save tensors data offset of the main file. | |
// For subsidiary files, `meta` tensor data offset must not be used, | |
// so we build a unified tensors index for weights. | |
for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) { | |
std::string tensor_name = std::string(cur->name); | |
// make sure there is no duplicated tensor names | |
if (weights_map.find(tensor_name) != weights_map.end()) { | |
throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", ggml_get_name(cur))); | |
} | |
n_elements += ggml_nelements(cur); | |
n_bytes += ggml_nbytes(cur); | |
weights_map.emplace(tensor_name, llama_tensor_weight(files.back().get(), 0, meta.get(), cur)); | |
} | |
uint16_t n_split = 0; | |
get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false); | |
// Load additional GGML contexts | |
if (n_split > 1) { | |
// make sure the main file is loaded first | |
uint16_t idx = 0; | |
const std::string kv_split_no = llm_kv(LLM_KV_SPLIT_NO); | |
get_key(kv_split_no, idx); | |
if (idx != 0) { | |
throw std::runtime_error(format("illegal split file idx: %d (file: %s), model must be loaded with the first split", idx, fname.c_str())); | |
} | |
// generate list of splits if needed | |
if (splits.empty()) { | |
splits = llama_get_list_splits(fname, idx, n_split); | |
} | |
// in case user give a custom list of splits, check if it matches the expected number | |
if (n_split != (uint16_t)splits.size()) { | |
throw std::runtime_error(format("invalid split count, given: %zu splits, but expected %d", splits.size(), n_split)); | |
} | |
if (trace > 0) { | |
LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split); | |
} | |
// load other splits | |
for (idx = 1; idx < n_split; idx++) { | |
const char * fname_split = splits[idx].c_str(); | |
struct gguf_init_params split_params = { | |
/*.no_alloc = */ true, | |
/*.ctx = */ &ctx, | |
}; | |
gguf_context_ptr ctx_gguf { gguf_init_from_file(fname_split, split_params) }; | |
if (!ctx_gguf) { | |
throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, fname_split)); | |
} | |
// check idx | |
{ | |
const int kid = gguf_find_key(ctx_gguf.get(), kv_split_no.c_str()); | |
if (kid < 0) { | |
throw std::runtime_error(format("missing key %s in GGUF split %s", kv_split_no.c_str(), fname_split)); | |
} | |
int idx_gguf = gguf_get_val_u16(ctx_gguf.get(), kid); | |
if (idx_gguf != idx) { | |
throw std::runtime_error(format("invalid split file idx: %d (file: %s), expected %d", idx_gguf, fname_split, idx)); | |
} | |
} | |
files.emplace_back(new llama_file(fname_split, "rb")); | |
contexts.emplace_back(ctx); | |
// Save tensors data offset info of the shard. | |
for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) { | |
std::string tensor_name = std::string(cur->name); | |
// make sure there is no duplicated tensor names | |
if (weights_map.find(tensor_name) != weights_map.end()) { | |
throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", ggml_get_name(cur))); | |
} | |
n_elements += ggml_nelements(cur); | |
n_bytes += ggml_nbytes(cur); | |
weights_map.emplace(tensor_name, llama_tensor_weight(files.back().get(), idx, ctx_gguf.get(), cur)); | |
} | |
} | |
get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors); | |
// sanity check | |
{ | |
const int n_tensors_loaded = (int) weights_map.size(); | |
if (n_tensors != n_tensors_loaded) { | |
throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded)); | |
} | |
} | |
LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1); | |
} | |
n_kv = gguf_get_n_kv(meta.get()); | |
n_tensors = weights_map.size(); | |
fver = (enum llama_fver) gguf_get_version(meta.get()); | |
LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n", | |
__func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver)); | |
// determine file type based on the number of tensors for each quantization and print meta data | |
// TODO: make optional | |
{ | |
std::map<enum ggml_type, uint32_t> n_type; | |
uint32_t n_type_max = 0; | |
enum ggml_type type_max = GGML_TYPE_F32; | |
for (const auto & it : weights_map) { | |
const llama_tensor_weight & w = it.second; | |
const ggml_tensor * tensor = w.tensor; | |
enum ggml_type type = tensor->type; | |
n_type[type]++; | |
if (n_type_max < n_type[type]) { | |
n_type_max = n_type[type]; | |
type_max = type; | |
} | |
if (trace > 0) { | |
const uint16_t sid = w.idx; | |
LLAMA_LOG_INFO("%s: - tensor split %2d: %32s %-8s [ %s ]\n", __func__, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str()); | |
} | |
} | |
switch (type_max) { | |
case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break; | |
case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break; | |
case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break; | |
case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break; | |
case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break; | |
case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break; | |
case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break; | |
case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break; | |
case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break; | |
case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break; | |
case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break; | |
case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break; | |
case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break; | |
case GGML_TYPE_TQ1_0: ftype = LLAMA_FTYPE_MOSTLY_TQ1_0; break; | |
case GGML_TYPE_TQ2_0: ftype = LLAMA_FTYPE_MOSTLY_TQ2_0; break; | |
case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break; | |
case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break; | |
case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break; | |
case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break; | |
case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break; | |
case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break; | |
case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break; | |
case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break; | |
case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break; | |
default: | |
{ | |
LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max)); | |
ftype = LLAMA_FTYPE_ALL_F32; | |
} break; | |
} | |
// this is a way to mark that we have "guessed" the file type | |
ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED); | |
{ | |
const int kid = gguf_find_key(meta.get(), "general.file_type"); // TODO: use LLM_KV | |
if (kid >= 0) { | |
ftype = (llama_ftype) gguf_get_val_u32(meta.get(), kid); | |
} | |
} | |
LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__); | |
for (int i = 0; i < n_kv; i++) { | |
const char * name = gguf_get_key(meta.get(), i); | |
const enum gguf_type type = gguf_get_kv_type(meta.get(), i); | |
const std::string type_name = | |
type == GGUF_TYPE_ARRAY | |
? format("%s[%s,%zu]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta.get(), i)), gguf_get_arr_n(meta.get(), i)) | |
: gguf_type_name(type); | |
std::string value = gguf_kv_to_str(meta.get(), i); | |
const size_t MAX_VALUE_LEN = 40; | |
if (value.size() > MAX_VALUE_LEN) { | |
value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str()); | |
} | |
replace_all(value, "\n", "\\n"); | |
LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str()); | |
} | |
// print type counts | |
for (auto & kv : n_type) { | |
if (kv.second == 0) { | |
continue; | |
} | |
LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second); | |
} | |
} | |
if (!llama_mmap::SUPPORTED) { | |
LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__); | |
use_mmap = false; | |
} | |
this->use_mmap = use_mmap; | |
this->check_tensors = check_tensors; | |
} | |
std::string llama_model_loader::get_arch_name() const { | |
return arch_name; | |
} | |
enum llm_arch llama_model_loader::get_arch() const { | |
return llm_kv.arch; | |
} | |
const llama_model_loader::llama_tensor_weight * llama_model_loader::get_weight(const char * name) const { | |
auto pos = weights_map.find(name); | |
if (pos != weights_map.end()) { | |
return &pos->second; | |
} | |
return nullptr; | |
} | |
const llama_model_loader::llama_tensor_weight & llama_model_loader::require_weight(const char * name) const { | |
const llama_tensor_weight * weight = get_weight(name); | |
if (!weight) { | |
throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name)); | |
} | |
return *weight; | |
} | |
struct ggml_tensor * llama_model_loader::get_tensor_meta(const char * name) const { | |
const auto * weight = get_weight(name); | |
if (!weight) { | |
return nullptr; | |
} | |
return weight->tensor; | |
} | |
struct ggml_tensor * llama_model_loader::require_tensor_meta(const std::string & name) const { | |
struct ggml_tensor * tensor = get_tensor_meta(name.c_str()); | |
if (!tensor) { | |
throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str())); | |
} | |
return tensor; | |
} | |
const struct ggml_tensor * llama_model_loader::check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const { | |
const struct ggml_tensor * cur = get_tensor_meta(name.c_str()); | |
if (cur == NULL) { | |
if (!required) { | |
return NULL; | |
} | |
throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str())); | |
} | |
{ | |
bool is_ok = true; | |
for (size_t i = 0; i < GGML_MAX_DIMS; ++i) { | |
if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) { | |
is_ok = false; | |
break; | |
} | |
} | |
if (!is_ok) { | |
throw std::runtime_error( | |
format("%s: tensor '%s' has wrong shape; expected %s, got %s", | |
__func__, name.c_str(), | |
llama_format_tensor_shape(ne).c_str(), | |
llama_format_tensor_shape(cur).c_str())); | |
} | |
} | |
return cur; | |
} | |
struct ggml_tensor * llama_model_loader::create_tensor(struct ggml_context * ctx, const std::string & name, const std::initializer_list<int64_t> & ne, int flags) { | |
const struct ggml_tensor * cur = check_tensor_dims(name, ne, !(flags & TENSOR_NOT_REQUIRED)); | |
if (cur == NULL) { | |
return NULL; | |
} | |
bool duplicated = flags & TENSOR_DUPLICATED; | |
struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur); | |
ggml_set_name(tensor, ggml_get_name(cur)); | |
if (duplicated) { | |
size_data += ggml_nbytes(cur); | |
} else { | |
n_created++; | |
} | |
return tensor; | |
} | |
struct ggml_tensor * llama_model_loader::create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::initializer_list<int64_t> & ne, size_t offset, bool required) { | |
const struct ggml_tensor * cur = check_tensor_dims(name, ne, required); | |
if (cur == NULL) { | |
return NULL; | |
} | |
if (cur->type != base->type) { | |
throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type))); | |
} | |
std::array<int64_t, GGML_MAX_DIMS> dims; | |
for (size_t i = 0; i < GGML_MAX_DIMS; ++i) { | |
dims[i] = i < ne.size() ? ne.begin()[i] : 1; | |
} | |
struct ggml_tensor * tensor = ggml_view_4d(ctx, base, | |
dims[0], dims[1], dims[2], dims[3], | |
cur->nb[1], cur->nb[2], cur->nb[3], | |
offset); | |
ggml_set_name(tensor, name.c_str()); | |
n_created++; | |
return tensor; | |
} | |
void llama_model_loader::done_getting_tensors() const { | |
if (n_created != n_tensors) { | |
throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created)); | |
} | |
} | |
void llama_model_loader::init_mappings(bool prefetch, llama_mlocks * mlock_mmaps) { | |
if (use_mmap) { | |
mappings.reserve(files.size()); | |
mmaps_used.reserve(files.size()); | |
for (const auto & file : files) { | |
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU)); | |
auto * is_numa_fn = (decltype(ggml_is_numa) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_is_numa"); | |
std::unique_ptr<llama_mmap> mapping = std::make_unique<llama_mmap>(file.get(), prefetch ? -1 : 0, is_numa_fn()); | |
mmaps_used.emplace_back(mapping->size(), 0); | |
if (mlock_mmaps) { | |
std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock()); | |
mlock_mmap->init(mapping->addr()); | |
mlock_mmaps->emplace_back(std::move(mlock_mmap)); | |
} | |
mappings.emplace_back(std::move(mapping)); | |
} | |
} | |
// compute the total size of all tensors for progress reporting | |
for (const auto & it : weights_map) { | |
size_data += ggml_nbytes(it.second.tensor); | |
} | |
} | |
void llama_model_loader::get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const { | |
GGML_ASSERT(!mappings.empty()); | |
const auto & mapping = mappings.at(idx); | |
*first = mapping->size(); | |
*last = 0; | |
*addr = mapping->addr(); | |
for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) { | |
const auto * weight = get_weight(ggml_get_name(tensor)); | |
if (!weight || weight->idx != idx) { | |
continue; | |
} | |
*first = std::min(*first, weight->offs); | |
*last = std::max(*last, weight->offs + ggml_nbytes(tensor)); | |
} | |
} | |
void llama_model_loader::load_data_for(struct ggml_tensor * cur) const { | |
const auto & w = require_weight(ggml_get_name(cur)); | |
if (use_mmap) { | |
const auto & mapping = mappings.at(w.idx); | |
if (cur->data == nullptr) { | |
cur->data = (uint8_t *)mapping->addr() + w.offs; | |
} else { | |
memcpy(cur->data, (uint8_t *)mapping->addr() + w.offs, ggml_nbytes(cur)); | |
} | |
} else { | |
GGML_ASSERT(cur->data != nullptr); | |
GGML_ASSERT(w.idx < files.size()); | |
const auto & file = files.at(w.idx); | |
file->seek(w.offs, SEEK_SET); | |
file->read_raw(cur->data, ggml_nbytes(cur)); | |
} | |
if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) { | |
throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur))); | |
} | |
} | |
bool llama_model_loader::load_all_data( | |
struct ggml_context * ctx, | |
llama_buf_map & bufs, | |
llama_mlocks * lmlocks, | |
llama_progress_callback progress_callback, | |
void * progress_callback_user_data) { | |
GGML_ASSERT(size_data != 0 && "call init_mappings() first"); | |
std::vector<no_init<uint8_t>> read_buf; | |
std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result; | |
// 4 staging buffers for async uploads, each sized 1MB seems to be a good default for single NVMe drives. | |
// NVMe raid configurations might require more / larger buffers. | |
constexpr size_t n_buffers = 4; | |
constexpr size_t buffer_size = 1 * 1024 * 1024; // 1MB | |
std::vector<ggml_backend_buffer_t> host_buffers; | |
std::vector<ggml_backend_event_t> events; | |
std::vector<void *> host_ptrs; | |
size_t buffer_idx = 0; // buffer to use for async loads | |
ggml_backend_t upload_backend = [&](const char * func) -> ggml_backend_t { | |
if (use_mmap || check_tensors) { | |
return nullptr; | |
} | |
// When not using mmaped io use async uploads from pinned memory to GPU memory. | |
// First determine if the backend supports the necessary features for async uploads. | |
auto * buf = bufs.count(0) ? bufs.at(0) : nullptr; | |
if (!buf) { | |
LLAMA_LOG_DEBUG("%s: no buffer found for async uploads\n", func); | |
return nullptr; | |
} | |
auto * buft = ggml_backend_buffer_get_type(buf); | |
auto * dev = ggml_backend_buft_get_device(buft); | |
if (!dev) { | |
LLAMA_LOG_DEBUG("%s: no device found for buffer type %s for async uploads\n", func, | |
ggml_backend_buft_name(buft)); | |
return nullptr; | |
} | |
if (buft != ggml_backend_dev_buffer_type(dev)) { | |
LLAMA_LOG_DEBUG("%s: buffer type %s is not the default buffer type for device %s for async uploads\n", func, | |
ggml_backend_buft_name(buft), ggml_backend_dev_name(dev)); | |
return nullptr; | |
} | |
ggml_backend_dev_props props; | |
ggml_backend_dev_get_props(dev, &props); | |
if (!props.caps.async || !props.caps.host_buffer || !props.caps.events) { | |
LLAMA_LOG_DEBUG("%s: device %s does not support async, host buffers or events\n", func, | |
ggml_backend_dev_name(dev)); | |
return nullptr; | |
} | |
auto * host_buft = ggml_backend_dev_host_buffer_type(dev); | |
if (!host_buft) { | |
LLAMA_LOG_DEBUG("%s: no host buffer type found for device %s\n", func, | |
ggml_backend_dev_name(dev)); | |
return nullptr; | |
} | |
// If the backend is supported, create pinned memory buffers and events for synchronisation. | |
for (size_t idx = 0; idx < n_buffers; ++idx) { | |
auto * buf = ggml_backend_buft_alloc_buffer(host_buft, buffer_size); | |
if (!buf) { | |
LLAMA_LOG_DEBUG("%s: failed to allocate host buffer for async uploads for device %s\n", func, | |
ggml_backend_dev_name(dev)); | |
return nullptr; | |
} | |
host_buffers.emplace_back(buf); | |
host_ptrs.emplace_back(ggml_backend_buffer_get_base(buf)); | |
auto * event = ggml_backend_event_new(dev); | |
if (!event) { | |
LLAMA_LOG_DEBUG("%s: failed to create event for async uploads for device %s\n", func, | |
ggml_backend_dev_name(dev)); | |
return nullptr; | |
} | |
events.emplace_back(event); | |
} | |
ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr); | |
if (!backend) { | |
LLAMA_LOG_DEBUG("%s: failed to initialize backend for device %s for async uploads\n", func, | |
ggml_backend_dev_name(dev)); | |
return nullptr; | |
} | |
return backend; | |
}(__func__); | |
if (upload_backend) { | |
LLAMA_LOG_DEBUG("%s: using async uploads for device %s, buffer type %s, backend %s\n", __func__, | |
ggml_backend_dev_name(ggml_backend_get_device(upload_backend)), | |
ggml_backend_buft_name(ggml_backend_buffer_get_type(bufs.at(0))), | |
ggml_backend_name(upload_backend)); | |
} | |
for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) { | |
const auto * weight = get_weight(ggml_get_name(cur)); | |
if (weight == nullptr) { | |
// this can happen with split experts models | |
continue; | |
} | |
if (progress_callback) { | |
if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) { | |
return false; | |
} | |
} | |
size_t n_size = ggml_nbytes(cur); | |
if (use_mmap) { | |
const auto & mapping = mappings.at(weight->idx); | |
ggml_backend_buffer_t buf_mmap = nullptr; | |
if (bufs.count(weight->idx)) { | |
buf_mmap = bufs.at(weight->idx); | |
} | |
uint8_t * data = (uint8_t *) mapping->addr() + weight->offs; | |
if (check_tensors) { | |
validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] { | |
return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size)); | |
})); | |
} | |
GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated | |
if (buf_mmap && cur->data == nullptr) { | |
ggml_backend_tensor_alloc(buf_mmap, cur, data); | |
if (lmlocks) { | |
const auto & lmlock = lmlocks->at(weight->idx); | |
lmlock->grow_to(weight->offs + n_size); | |
} | |
auto & mmap_used = mmaps_used[weight->idx]; | |
mmap_used.first = std::min(mmap_used.first, weight->offs); | |
mmap_used.second = std::max(mmap_used.second, weight->offs + n_size); | |
} else { | |
ggml_backend_tensor_set(cur, data, 0, n_size); | |
} | |
} else { | |
const auto & file = files.at(weight->idx); | |
if (ggml_backend_buffer_is_host(cur->buffer)) { | |
file->seek(weight->offs, SEEK_SET); | |
file->read_raw(cur->data, n_size); | |
if (check_tensors) { | |
validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] { | |
return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size)); | |
})); | |
} | |
} else { | |
// If upload_backend is valid load the tensor in chunks to pinned memory and upload the buffers asynchronously to the GPU. | |
if (upload_backend) { | |
file->seek(weight->offs, SEEK_SET); | |
size_t bytes_read = 0; | |
while (bytes_read < n_size) { | |
size_t read_iteration = std::min<size_t>(buffer_size, n_size - bytes_read); | |
ggml_backend_event_synchronize(events[buffer_idx]); | |
file->read_raw(host_ptrs[buffer_idx], read_iteration); | |
ggml_backend_tensor_set_async(upload_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration); | |
ggml_backend_event_record(events[buffer_idx], upload_backend); | |
bytes_read += read_iteration; | |
++buffer_idx; | |
buffer_idx %= n_buffers; | |
} | |
} else { | |
read_buf.resize(n_size); | |
file->seek(weight->offs, SEEK_SET); | |
file->read_raw(read_buf.data(), n_size); | |
ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size); | |
if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) { | |
throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur))); | |
} | |
} | |
} | |
} | |
size_done += n_size; | |
} | |
// free temporary resources used for async uploads | |
for (auto * event : events) { | |
ggml_backend_event_synchronize(event); | |
ggml_backend_event_free(event); | |
} | |
for (auto * buf : host_buffers) { | |
ggml_backend_buffer_free(buf); | |
} | |
ggml_backend_free(upload_backend); | |
// check validation results | |
bool validation_failed = false; | |
for (auto & future : validation_result) { | |
auto result = future.get(); | |
if (!result.second) { | |
LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first)); | |
validation_failed = true; | |
} | |
} | |
if (validation_failed) { | |
throw std::runtime_error("found tensors with invalid data"); | |
} | |
// check if this is the last call and do final cleanup | |
if (size_done >= size_data) { | |
// unmap offloaded tensors and metadata | |
if (use_mmap) { | |
for (uint32_t idx = 0; idx < mappings.size(); idx++) { | |
const auto & mmap_used = mmaps_used.at(idx); | |
auto & mapping = mappings.at(idx); | |
mapping->unmap_fragment(0, mmap_used.first); | |
if (mmap_used.second != 0) { | |
mapping->unmap_fragment(mmap_used.second, mapping->size()); | |
} | |
} | |
} | |
if (progress_callback) { | |
// Even though the model is done loading, we still honor | |
// cancellation since we need to free allocations. | |
return progress_callback(1.0f, progress_callback_user_data); | |
} | |
} | |
return true; | |
} | |
std::string llama_model_loader::ftype_name() const { | |
return llama_model_ftype_name(ftype); | |
} | |
void llama_model_loader::print_info() const { | |
LLAMA_LOG_INFO("%s: file format = %s\n", __func__, llama_file_version_name(fver)); | |
LLAMA_LOG_INFO("%s: file type = %s\n", __func__, llama_model_ftype_name(ftype).c_str()); | |
if (n_bytes < GiB) { | |
LLAMA_LOG_INFO("%s: file size = %.2f MiB (%.2f BPW) \n", __func__, n_bytes/1024.0/1024.0, n_bytes*8.0/n_elements); | |
} else { | |
LLAMA_LOG_INFO("%s: file size = %.2f GiB (%.2f BPW) \n", __func__, n_bytes/1024.0/1024.0/1024.0, n_bytes*8.0/n_elements); | |
} | |
} | |