Spaces:
Running
Running
// vec | |
struct ggml_tensor * llama_adapter_cvec::tensor_for(int il) const { | |
if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) { | |
return nullptr; | |
} | |
return tensors[il]; | |
} | |
struct ggml_tensor * llama_adapter_cvec::apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const { | |
ggml_tensor * layer_dir = tensor_for(il); | |
if (layer_dir != nullptr) { | |
cur = ggml_add(ctx, cur, layer_dir); | |
} | |
return cur; | |
} | |
bool llama_adapter_cvec::init(const llama_model & model) { | |
const auto & hparams = model.hparams; | |
GGML_ASSERT(tensors.empty()); | |
GGML_ASSERT(ctxs.empty()); | |
GGML_ASSERT(bufs.empty()); | |
// create a context for each buffer type | |
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map; | |
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * { | |
auto it = ctx_map.find(buft); | |
if (it == ctx_map.end()) { | |
struct ggml_init_params params = { | |
/*.mem_size =*/ hparams.n_layer*ggml_tensor_overhead(), | |
/*.mem_buffer =*/ NULL, | |
/*.no_alloc =*/ true, | |
}; | |
ggml_context * ctx = ggml_init(params); | |
if (!ctx) { | |
return nullptr; | |
} | |
ctx_map[buft] = ctx; | |
ctxs.emplace_back(ctx); | |
return ctx; | |
} | |
return it->second; | |
}; | |
// make tensors | |
tensors.reserve(hparams.n_layer); | |
tensors.push_back(nullptr); // there's never a tensor for layer 0 | |
for (size_t il = 1; il < hparams.n_layer; il++) { | |
ggml_backend_buffer_type_t buft = model.select_buft(il); | |
ggml_context * ctx = ctx_for_buft(buft); | |
if (!ctx) { | |
LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__); | |
return false; | |
} | |
ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd); | |
tensors.push_back(tensor); | |
} | |
// allocate tensors / buffers and zero | |
bufs.reserve(ctx_map.size()); | |
for (auto it : ctx_map) { | |
ggml_backend_buffer_type_t buft = it.first; | |
ggml_context * ctx = it.second; | |
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); | |
if (!buf) { | |
LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__); | |
return false; | |
} | |
ggml_backend_buffer_clear(buf, 0); | |
bufs.emplace_back(buf); | |
} | |
return true; | |
} | |
int32_t llama_adapter_cvec::apply( | |
const llama_model & model, | |
const float * data, | |
size_t len, | |
int32_t n_embd, | |
int32_t il_start, | |
int32_t il_end) { | |
const auto & hparams = model.hparams; | |
if (data == nullptr) { | |
// disable the current control vector (but leave allocated for later) | |
layer_start = -1; | |
layer_end = -1; | |
return 0; | |
} | |
if (n_embd != (int) hparams.n_embd) { | |
LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__); | |
return 1; | |
} | |
if (tensors.empty()) { | |
if (!init(model)) { | |
return 1; | |
} | |
} | |
layer_start = il_start; | |
layer_end = il_end; | |
for (size_t il = 1; il < hparams.n_layer; il++) { | |
assert(tensors[il] != nullptr); | |
const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present | |
if (off + n_embd <= len) { | |
ggml_backend_tensor_set(tensors[il], data + off, 0, n_embd * ggml_element_size(tensors[il])); | |
} | |
} | |
return 0; | |
} | |
// lora | |
llama_adapter_lora_weight * llama_adapter_lora::get_weight(struct ggml_tensor * w) { | |
const std::string name(w->name); | |
const auto pos = ab_map.find(name); | |
if (pos != ab_map.end()) { | |
return &pos->second; | |
} | |
return nullptr; | |
} | |
static void llama_adapter_lora_init_impl(struct llama_model & model, const char * path_lora, struct llama_adapter_lora & adapter) { | |
LLAMA_LOG_INFO("%s: loading lora adapter from '%s' ...\n", __func__, path_lora); | |
ggml_context * ctx_init; | |
struct gguf_init_params meta_gguf_params = { | |
/* .no_alloc = */ true, | |
/* .ctx = */ &ctx_init, | |
}; | |
gguf_context_ptr ctx_gguf { gguf_init_from_file(path_lora, meta_gguf_params) }; | |
if (!ctx_gguf) { | |
throw std::runtime_error("failed to load lora adapter file from " + std::string(path_lora)); | |
} | |
ggml_context_ptr ctx { ctx_init }; | |
// check metadata | |
{ | |
auto get_kv_str = [&](const std::string & key) -> std::string { | |
int id = gguf_find_key(ctx_gguf.get(), key.c_str()); | |
return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf.get(), id)); | |
}; | |
auto get_kv_f32 = [&](const std::string & key) -> float { | |
int id = gguf_find_key(ctx_gguf.get(), key.c_str()); | |
return id < 0 ? 0.0f : gguf_get_val_f32(ctx_gguf.get(), id); | |
}; | |
LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN); | |
auto general_type = get_kv_str(llm_kv(LLM_KV_GENERAL_TYPE)); | |
if (general_type != "adapter") { | |
throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type); | |
} | |
auto general_arch_str = get_kv_str(llm_kv(LLM_KV_GENERAL_ARCHITECTURE)); | |
auto general_arch = llm_arch_from_string(general_arch_str); | |
if (general_arch != model.arch) { | |
throw std::runtime_error("model arch and LoRA arch mismatch"); | |
} | |
auto adapter_type = get_kv_str(llm_kv(LLM_KV_ADAPTER_TYPE)); | |
if (adapter_type != "lora") { | |
throw std::runtime_error("expect adapter.type to be 'lora', but got: " + adapter_type); | |
} | |
adapter.alpha = get_kv_f32(llm_kv(LLM_KV_ADAPTER_LORA_ALPHA)); | |
} | |
int n_tensors = gguf_get_n_tensors(ctx_gguf.get()); | |
// contexts for each buffer type | |
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map; | |
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * { | |
auto it = ctx_map.find(buft); | |
if (it == ctx_map.end()) { | |
// add a new context | |
struct ggml_init_params params = { | |
/*.mem_size =*/ n_tensors*ggml_tensor_overhead(), | |
/*.mem_buffer =*/ NULL, | |
/*.no_alloc =*/ true, | |
}; | |
ggml_context * buft_ctx = ggml_init(params); | |
if (!buft_ctx) { | |
return nullptr; | |
} | |
ctx_map[buft] = buft_ctx; | |
adapter.ctxs.emplace_back(buft_ctx); | |
return buft_ctx; | |
}; | |
return it->second; | |
}; | |
// bundle lora_a and lora_b into pairs | |
std::map<std::string, llama_adapter_lora_weight> ab_map; | |
auto str_endswith = [](const std::string & str, const std::string & suffix) { | |
return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0; | |
}; | |
for (ggml_tensor * cur = ggml_get_first_tensor(ctx.get()); cur; cur = ggml_get_next_tensor(ctx.get(), cur)) { | |
std::string name(cur->name); | |
if (str_endswith(name, ".lora_a")) { | |
replace_all(name, ".lora_a", ""); | |
if (ab_map.find(name) == ab_map.end()) { | |
ab_map[name] = llama_adapter_lora_weight(cur, nullptr); | |
} else { | |
ab_map[name].a = cur; | |
} | |
} else if (str_endswith(name, ".lora_b")) { | |
replace_all(name, ".lora_b", ""); | |
if (ab_map.find(name) == ab_map.end()) { | |
ab_map[name] = llama_adapter_lora_weight(nullptr, cur); | |
} else { | |
ab_map[name].b = cur; | |
} | |
} else if (str_endswith(name, "_norm.weight")) { | |
// TODO: add support for norm vector | |
// for now, we don't really care because most adapters still work fine without it | |
continue; | |
} else { | |
throw std::runtime_error("LoRA tensor '" + name + "' has unexpected suffix"); | |
} | |
} | |
// add tensors | |
for (auto & it : ab_map) { | |
const std::string & name = it.first; | |
llama_adapter_lora_weight & w = it.second; | |
bool is_token_embd = str_endswith(name, "token_embd.weight"); | |
if (!w.a || !w.b) { | |
throw std::runtime_error("LoRA tensor pair for '" + name + "' is missing one component"); | |
} | |
// device buft and device ctx | |
const auto * model_tensor = model.get_tensor(name.c_str()); | |
if (!model_tensor) { | |
throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model (hint: maybe wrong base model?)"); | |
} | |
struct ggml_context * dev_ctx = ctx_for_buft(ggml_backend_buffer_get_type(model_tensor->buffer)); | |
// validate tensor shape | |
if (is_token_embd) { | |
// expect B to be non-transposed, A and B are flipped; see llm_build_inp_embd() | |
if (model_tensor->ne[0] != w.b->ne[1] || model_tensor->ne[1] != w.a->ne[1]) { | |
throw std::runtime_error("tensor '" + name + "' has incorrect shape (hint: maybe wrong base model?)"); | |
} | |
} else { | |
if (model_tensor->ne[0] != w.a->ne[0] || model_tensor->ne[1] != w.b->ne[1]) { | |
throw std::runtime_error("tensor '" + name + "' has incorrect shape (hint: maybe wrong base model?)"); | |
} | |
if (w.a->ne[1] != w.b->ne[0]) { | |
throw std::runtime_error("lora_a tensor is not transposed (hint: adapter from \"finetune\" example is no longer supported)"); | |
} | |
} | |
// save tensor to adapter | |
struct ggml_tensor * tensor_a = ggml_dup_tensor(dev_ctx, w.a); | |
struct ggml_tensor * tensor_b = ggml_dup_tensor(dev_ctx, w.b); | |
ggml_set_name(tensor_a, w.a->name); | |
ggml_set_name(tensor_b, w.b->name); | |
adapter.ab_map[name] = llama_adapter_lora_weight(tensor_a, tensor_b); | |
} | |
// allocate tensors / buffers and zero | |
{ | |
adapter.ctxs.reserve(ctx_map.size()); | |
adapter.bufs.reserve(ctx_map.size()); | |
for (auto & it : ctx_map) { | |
ggml_backend_buffer_type_t buft = it.first; | |
ggml_context * ctx_dev = it.second; | |
ggml_backend_buffer_ptr buf { ggml_backend_alloc_ctx_tensors_from_buft(ctx_dev, buft) }; | |
if (!buf) { | |
throw std::runtime_error("failed to allocate buffer for lora adapter\n"); | |
} | |
LLAMA_LOG_INFO("%s: %10s LoRA buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get())/1024.0/1024.0); | |
adapter.bufs.emplace_back(std::move(buf)); | |
} | |
} | |
// set tensor data | |
{ | |
llama_file gguf_file(path_lora, "rb"); | |
std::vector<uint8_t> read_buf; | |
auto set_tensor = [&](struct ggml_tensor * orig, struct ggml_tensor * dev) { | |
size_t offs = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), gguf_find_tensor(ctx_gguf.get(), orig->name)); | |
size_t size = ggml_nbytes(orig); | |
read_buf.resize(size); | |
gguf_file.seek(offs, SEEK_SET); | |
gguf_file.read_raw(read_buf.data(), size); | |
ggml_backend_tensor_set(dev, read_buf.data(), 0, size); | |
}; | |
for (auto & it : adapter.ab_map) { | |
auto orig = ab_map[it.first]; | |
auto dev = it.second; | |
set_tensor(orig.a, dev.a); | |
set_tensor(orig.b, dev.b); | |
} | |
} | |
LLAMA_LOG_INFO("%s: loaded %zu tensors from lora file\n", __func__, adapter.ab_map.size()*2); | |
} | |
struct llama_adapter_lora * llama_adapter_lora_init(struct llama_model * model, const char * path_lora) { | |
struct llama_adapter_lora * adapter = new llama_adapter_lora(); | |
try { | |
llama_adapter_lora_init_impl(*model, path_lora, *adapter); | |
return adapter; | |
} catch (const std::exception & err) { | |
LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what()); | |
delete adapter; | |
} | |
return nullptr; | |
} | |
void llama_adapter_lora_free(struct llama_adapter_lora * adapter) { | |
delete adapter; | |
} | |