Spaces:
Running
Running
#!/usr/bin/env python3 | |
# Test gguf.quants so that it exactly matches the C implementation of the (de)quantization | |
# NOTE: this is kind of a mess, but at least it worked for initially testing the Python implementations. | |
from __future__ import annotations | |
import argparse | |
from math import prod | |
import os | |
import sys | |
from pathlib import Path | |
import ctypes | |
import logging | |
import numpy as np | |
# Necessary to load the local gguf package | |
if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists(): | |
sys.path.insert(0, str(Path(__file__).parent.parent)) | |
import gguf | |
from gguf.constants import GGMLQuantizationType | |
logger = logging.getLogger("test-quants") | |
c_float_p = ctypes.POINTER(ctypes.c_float) | |
class ggml_init_params(ctypes.Structure): | |
_fields_ = [ | |
("mem_size", ctypes.c_size_t), | |
("mem_buffer", ctypes.c_void_p), | |
("no_alloc", ctypes.c_bool), | |
] | |
class GGMLQuants: | |
libggml: ctypes.CDLL | |
def __init__(self, libggml: Path): | |
self.libggml = ctypes.CDLL(str(libggml)) | |
self.libggml.ggml_quantize_chunk.restype = ctypes.c_size_t | |
# enum ggml_type type, | |
# const float * src, | |
# void * dst, | |
# int64_t start, | |
# int64_t nrows, | |
# int64_t n_per_row, | |
# const float * imatrix) { | |
self.libggml.ggml_quantize_chunk.argtypes = ( | |
ctypes.c_int, | |
ctypes.POINTER(ctypes.c_float), | |
ctypes.c_void_p, | |
ctypes.c_int64, | |
ctypes.c_int64, | |
ctypes.c_int64, | |
ctypes.POINTER(ctypes.c_float), | |
) | |
self.libggml.ggml_quantize_requires_imatrix.restype = ctypes.c_bool | |
self.libggml.ggml_quantize_requires_imatrix.argtypes = (ctypes.c_int,) | |
for t in ( | |
"q4_0", "q4_1", "q5_0", "q5_1", "q8_0", | |
"q2_K", "q3_K", "q4_K", "q5_K", "q6_K", | |
"tq1_0", "tq2_0", | |
"iq2_xxs", "iq2_xs", "iq2_s", "iq3_xxs", "iq3_s", "iq1_s", "iq1_m", | |
"iq4_nl", "iq4_xs", | |
): | |
dequant_func: ctypes._NamedFuncPointer = getattr(self.libggml, "dequantize_row_" + t) | |
dequant_func.restype = None | |
dequant_func.argtypes = (ctypes.c_void_p, ctypes.POINTER(ctypes.c_float), ctypes.c_int64) | |
self.libggml.ggml_fp16_to_fp32_row.restype = None | |
self.libggml.ggml_fp16_to_fp32_row.argtypes = (ctypes.POINTER(ctypes.c_uint16), ctypes.POINTER(ctypes.c_float), ctypes.c_int64) | |
self.libggml.ggml_bf16_to_fp32_row.restype = None | |
self.libggml.ggml_bf16_to_fp32_row.argtypes = (ctypes.POINTER(ctypes.c_uint16), ctypes.POINTER(ctypes.c_float), ctypes.c_int64) | |
self.libggml.ggml_init.argtypes = (ggml_init_params,) | |
self.libggml.ggml_init(ggml_init_params(1 * 1024 * 1024, 0, False)) | |
def dequantize(self, tensor: np.ndarray, qtype: GGMLQuantizationType) -> np.ndarray: | |
result = np.zeros(gguf.quant_shape_from_byte_shape(tensor.shape, qtype), dtype=np.float32, order="C") | |
if qtype == GGMLQuantizationType.F32: | |
# no-op | |
result = tensor.view(np.float32) | |
elif qtype == GGMLQuantizationType.F16: | |
self.libggml.ggml_fp16_to_fp32_row(tensor.ctypes.data_as(ctypes.POINTER(ctypes.c_uint16)), result.ctypes.data_as(c_float_p), result.size) | |
elif qtype == GGMLQuantizationType.BF16: | |
self.libggml.ggml_bf16_to_fp32_row(tensor.ctypes.data_as(ctypes.POINTER(ctypes.c_uint16)), result.ctypes.data_as(c_float_p), result.size) | |
else: | |
lw_qname = qtype.name.lower() | |
if lw_qname[-1] == "k": | |
lw_qname = lw_qname[:-1] + "K" | |
dequant_func: ctypes._NamedFuncPointer = getattr(self.libggml, "dequantize_row_" + lw_qname) | |
dequant_func(tensor.ctypes.data_as(ctypes.c_void_p), result.ctypes.data_as(c_float_p), result.size) | |
return result | |
def quantize(self, data: np.ndarray, qtype: GGMLQuantizationType) -> np.ndarray: | |
result = np.zeros(gguf.quant_shape_to_byte_shape(data.shape, qtype), dtype=np.uint8, order="C") | |
if self.libggml.ggml_quantize_requires_imatrix(qtype.value): | |
# TODO: is a column-wise sum of squares appropriate? | |
qw = np.sum((data * data).reshape((-1, data.shape[-1])), axis=0).ctypes.data_as(c_float_p) | |
else: | |
qw = ctypes.cast(0, c_float_p) | |
result_size = self.libggml.ggml_quantize_chunk(qtype.value, data.ctypes.data_as(c_float_p), result.ctypes.data_as(ctypes.c_void_p), 0, prod(data.shape[:-1]), data.shape[-1], qw) | |
assert result.size == result_size | |
return result | |
def compare_tensors(t1: np.ndarray, t2: np.ndarray, qtype: GGMLQuantizationType) -> bool: | |
same = np.array_equal(t1, t2) | |
if same: | |
return True | |
else: | |
block_size, type_size = gguf.GGML_QUANT_SIZES[qtype] | |
if t1.dtype == np.float32: | |
t1 = t1.reshape((-1, block_size)) | |
t2 = t2.reshape((-1, block_size)) | |
else: | |
t1 = t1.reshape((-1, type_size)) | |
t2 = t2.reshape((-1, type_size)) | |
x = t1.view(np.uint8) ^ t2.view(np.uint8) | |
diff_bits = np.count_nonzero(np.unpackbits(x, axis=-1), axis=-1) | |
num_bad_blocks = np.count_nonzero(diff_bits, axis=0) | |
if num_bad_blocks == 0 and t1.shape == t2.shape: | |
logger.debug("Bits are equal, but arrays don't match, likely contains NANs") | |
return True | |
logger.debug(f"{num_bad_blocks} bad blocks ({100 * num_bad_blocks / x.shape[0]:.6f}%)") | |
bad_block_id = np.argmax(diff_bits, axis=0) | |
logger.debug(f"Worst block id: {bad_block_id}") | |
logger.debug(f"Sample bad block ({diff_bits[bad_block_id]} differing bits):\n{t1[bad_block_id]}\nReference:\n{t2[bad_block_id]}") | |
sum_diff_bits = np.sum(diff_bits) | |
logger.debug(f"{sum_diff_bits} bits differ ({100 * sum_diff_bits / (x.size * 8):.6f}%)") | |
return False | |
def do_test(libggml_path: Path, quick: bool = False): | |
ggml_quants = GGMLQuants(libggml_path) | |
np.set_printoptions(precision=None, threshold=(4 * 256) + 1, formatter={"int": lambda n: "0x%02X" % n}) | |
r = np.random.randn(8, 1024, 1024).astype(np.float32, copy=False) | |
for qtype in (GGMLQuantizationType.F16, *gguf.quants._type_traits.keys()): | |
has_dequantize = False | |
has_quantize = False | |
try: | |
gguf.dequantize(np.zeros((gguf.GGML_QUANT_SIZES[qtype][1]), dtype=np.uint8), qtype) | |
has_dequantize = True | |
except (NotImplementedError, AssertionError) as e: | |
if isinstance(e, AssertionError): | |
logger.error(f"Error with {qtype.name}: {e}") | |
raise e | |
try: | |
gguf.quantize(np.zeros((gguf.GGML_QUANT_SIZES[qtype][0]), dtype=np.float32), qtype) | |
has_quantize = True | |
except (NotImplementedError, AssertionError) as e: | |
if isinstance(e, AssertionError): | |
logger.error(f"Error with {qtype.name}: {e}") | |
raise e | |
if not has_dequantize and not has_quantize: | |
continue | |
logger.info(f"Testing {qtype.name}") | |
rc = r.copy(order="C") | |
pyq = None | |
ggq = None | |
if has_quantize: | |
logger.debug(f"Quantizing to {qtype.name} with Python") | |
pyq = gguf.quants.quantize(rc, qtype) | |
logger.debug(f"Quantizing to {qtype.name} with C") | |
ggq = ggml_quants.quantize(rc, qtype) | |
if qtype == GGMLQuantizationType.F16: | |
pyq = pyq.view(np.uint8) | |
quant_equal = compare_tensors(pyq, ggq, qtype) | |
if not quant_equal: | |
logger.error(f"Quantization to {qtype.name} does not match β") | |
else: | |
logger.info(f"Quantization to {qtype.name} matches exactly β ") | |
if has_dequantize: | |
if ggq is None and not quick: | |
logger.debug(f"Quantizing to {qtype.name} with C") | |
ggq = ggml_quants.quantize(rc, qtype) | |
if ggq is not None: | |
logger.debug(f"Dequantizing from {qtype.name} with Python") | |
pydq = gguf.quants.dequantize(ggq, qtype) | |
logger.debug(f"Dequantizing from {qtype.name} with C") | |
ggdq = ggml_quants.dequantize(ggq, qtype) | |
dequant_equal = compare_tensors(pydq, ggdq, qtype) | |
if not dequant_equal: | |
logger.error(f"Dequantization from {qtype.name} does not match β") | |
else: | |
logger.info(f"Dequantization from {qtype.name} matches exactly β ") | |
rq_shape = gguf.quants.quant_shape_to_byte_shape((8, 1024, 1024 // 2), qtype) | |
rq = np.random.random(rq_shape).astype(np.float16).view(np.uint8) | |
logger.debug(f"Dequantizing random f16 data as {qtype.name} with Python") | |
pydq = gguf.quants.dequantize(rq, qtype) | |
logger.debug(f"Dequantizing random f16 data as {qtype.name} with C") | |
ggdq = ggml_quants.dequantize(rq, qtype) | |
dequant_equal = compare_tensors(pydq, ggdq, qtype) | |
if not dequant_equal: | |
logger.error(f"Dequantization from random f16 data as {qtype.name} does not match β") | |
else: | |
logger.info(f"Dequantization from random f16 data as {qtype.name} matches exactly β ") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Test Python (de)quantization against the reference C implementation") | |
parser.add_argument("--libggml", type=Path, default=Path(__file__).parent.parent.parent / "build" / "ggml" / "src" / "libggml.so", help="The path to libggml.so") | |
parser.add_argument("--quick", action="store_true", help="Don't quantize with C when it's not strictly necessary") | |
args = parser.parse_args() | |
logging.basicConfig(level=logging.DEBUG) | |
do_test(args.libggml, args.quick) | |