File size: 126,705 Bytes
a1a4268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
#include "llama-vocab.h"

#include "llama-impl.h"
#include "llama-model-loader.h"

#include "unicode.h"

#include <algorithm>
#include <cassert>
#include <cfloat>
#include <climits>
#include <cstdarg>
#include <cstring>
#include <forward_list>
#include <map>
#include <queue>
#include <set>
#include <unordered_map>

//
// helpers
//

struct naive_trie {
    naive_trie() : has_value(false), value(0) {
    }
    void insert(const char * key, size_t len, int32_t value = 0) {
        if (len == 0) {
            this->has_value = true;
            this->value = value;
            return;
        }
        char c = key[0];
        auto res = children.find(c);
        if (res != children.end()) {
            res->second.insert(key + 1, len - 1, value);
        } else {
            auto res = children.insert(std::make_pair(c, naive_trie()));
            res.first->second.insert(key + 1, len - 1, value);
        }
    }
    std::pair<const char *, size_t> get_longest_prefix(const char * key, size_t len, size_t offset = 0) const {
        if (len == 0 || offset == len) {
            return std::make_pair(key, offset);
        }
        char c = key[offset];
        auto res = children.find(c);
        if (res != children.end()) {
            return res->second.get_longest_prefix(key, len, offset + 1);
        }

        return std::make_pair(key, offset);
    }
    const struct naive_trie * traverse(const char c) const {
        auto res = children.find(c);
        if (res != children.end()) {
            return &res->second;
        }

        return NULL;
    }
    std::map<char, struct naive_trie> children;
    bool has_value;
    llama_token value;
};

//
// tokenizers
//

struct llm_tokenizer {
    llm_tokenizer() {}
    virtual ~llm_tokenizer() = default;
};

struct llm_symbol {
    using index = int;
    index prev;
    index next;
    const char * text;
    size_t n;
};

static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");

//
// SPM tokenizer
// original implementation:
// https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
//

struct llm_bigram_spm {
    struct comparator {
        bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
            return (l.score < r.score) || (l.score == r.score && l.left > r.left);
        }
    };
    using queue_storage = std::vector<llm_bigram_spm>;
    using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
    llm_symbol::index left;
    llm_symbol::index right;
    float score;
    size_t size;
};

struct llm_tokenizer_spm : llm_tokenizer {
    llm_tokenizer_spm(const llama_vocab & /*vocab*/) {}
};

struct llm_tokenizer_spm_session {
    llm_tokenizer_spm_session(const llama_vocab & vocab) : vocab(vocab) {}

    void tokenize(const std::string & text, std::vector<llama_token> & output) {
        // split string into utf8 chars
        int index = 0;
        size_t offs = 0;
        while (offs < text.size()) {
            llm_symbol sym;
            size_t len = unicode_len_utf8(text[offs]);
            sym.text = text.c_str() + offs;
            sym.n = std::min(len, text.size() - offs);
            offs += sym.n;
            sym.prev = index - 1;
            sym.next = offs == text.size() ? -1 : index + 1;
            index++;
            symbols.emplace_back(sym);
        }

        // seed the work queue with all possible 2-character tokens.
        for (int i = 1; i < (int) symbols.size(); ++i) {
            try_add_bigram(i - 1, i);
        }

        // keep substituting the highest frequency pairs for as long as we can.
        while (!work_queue.empty()) {
            auto bigram = work_queue.top();
            work_queue.pop();

            auto & left_sym = symbols[bigram.left];
            auto & right_sym = symbols[bigram.right];

            // if one of the symbols already got merged, skip it.
            if (left_sym.n == 0 || right_sym.n == 0 ||
                left_sym.n + right_sym.n != bigram.size) {
                continue;
            }

            // merge the right sym into the left one
            left_sym.n += right_sym.n;
            right_sym.n = 0;

            //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);

            // remove the right sym from the chain
            left_sym.next = right_sym.next;
            if (right_sym.next >= 0) {
                symbols[right_sym.next].prev = bigram.left;
            }

            // find more substitutions
            try_add_bigram(left_sym.prev, bigram.left);
            try_add_bigram(bigram.left, left_sym.next);
        }

        for (int i = 0; i != -1; i = symbols[i].next) {
            auto & symbol = symbols[i];
            resegment(symbol, output);
        }
    }

private:
    void resegment(llm_symbol & symbol, std::vector<llama_token> & output) {
        auto text = std::string(symbol.text, symbol.n);
        auto token = vocab.text_to_token(text);

        // Do we need to support is_unused?
        if (token != LLAMA_TOKEN_NULL) {
            output.push_back(token);
            return;
        }

        const auto p = rev_merge.find(text);

        if (p == rev_merge.end()) {
            // output any symbols that did not form tokens as bytes.
            output.reserve(output.size() + symbol.n);
            for (int j = 0; j < (int)symbol.n; ++j) {
                llama_token id = vocab.byte_to_token(symbol.text[j]);
                output.push_back(id);
            }
            return;
        }

        resegment(symbols[p->second.first], output);
        resegment(symbols[p->second.second], output);
    }

    void try_add_bigram(int left, int right) {
        if (left == -1 || right == -1) {
            return;
        }
        const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
        auto token = vocab.text_to_token(text);

        if (token == LLAMA_TOKEN_NULL) {
            return;
        }

        if (static_cast<uint32_t>(token) >= vocab.n_tokens()) {
            return;
        }

        const auto & tok_data = vocab.get_token_data(token);

        llm_bigram_spm bigram;
        bigram.left  = left;
        bigram.right = right;
        bigram.score = tok_data.score;
        bigram.size  = text.size();

        work_queue.push(bigram);

        // Do we need to support is_unused?
        rev_merge[text] = std::make_pair(left, right);
    }

    const llama_vocab & vocab;
    // currently unused
    // const llm_tokenizer_spm * spm_tokenizer;

    std::vector<llm_symbol> symbols;
    llm_bigram_spm::queue work_queue;
    std::map<std::string, std::pair<int, int>> rev_merge;
};

//
// BPE tokenizer
// adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
// tried to simplify unicode stuff, so most likely does not work 100% correctly!
//

// TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused

template<typename T, typename Container = std::vector<T>, typename Compare = std::less<typename Container::value_type>>
class llama_priority_queue : public std::priority_queue<T, Container, Compare> {
public:
    using std::priority_queue<T, Container, Compare>::priority_queue;

    T pop_move() {
        T item = std::move(this->c.front());
        std::pop_heap(this->c.begin(), this->c.end(), this->comp);
        this->c.pop_back();
        return item;
    }

    void pop() =  delete;
};

struct llm_bigram_bpe {
    struct comparator {
        bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
            return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
        }
    };

    using queue_storage = std::vector<llm_bigram_bpe>;
    using queue = llama_priority_queue<llm_bigram_bpe, queue_storage, comparator>;
    llm_symbol::index left;
    llm_symbol::index right;
    std::string text;
    int rank;
    size_t size;
};

struct llm_tokenizer_bpe : llm_tokenizer {
    llm_tokenizer_bpe(const llama_vocab & vocab) {
        GGML_ASSERT(vocab.get_type() == LLAMA_VOCAB_TYPE_BPE);
        switch (vocab.get_pre_type()) {
            case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
                regex_exprs = {
                    // original regex from tokenizer.json
                    //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",

                    // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
                    "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
                };
                break;
            case LLAMA_VOCAB_PRE_TYPE_DBRX:
            case LLAMA_VOCAB_PRE_TYPE_SMAUG:
                regex_exprs = {
                    // same as llama3
                    "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
                };
                break;
            case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
                regex_exprs = {
                    "[\r\n]",
                    "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
                    "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
                    "\\s+$",
                    "[一-龥ࠀ-一가-퟿]+",
                    "\\p{N}+",
                };
                break;
            case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM:
                regex_exprs = {
                    "\\p{N}{1,3}",
                    "[一-龥぀-ゟ゠-ヿ]+",
                    "[!\"#$%&'()*+,\\-./:;<=>?@\\[\\\\\\]^_`{|}~][A-Za-z]+|[^\r\n\\p{L}\\p{P}\\p{S}]?[\\p{L}\\p{M}]+| ?[\\p{P}\\p{S}]+[\r\n]*|\\s*[\r\n]+|\\s+(?!\\S)|\\s+",
                };
                break;
            case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
                regex_exprs = {
                    "[\r\n]",
                    "\\s?\\p{L}+",
                    "\\s?\\p{P}+",
                    "[一-龥ࠀ-一가-퟿]+",
                    "\\p{N}",
                };
                break;
            case LLAMA_VOCAB_PRE_TYPE_FALCON:
                regex_exprs = {
                    "[\\p{P}\\$\\+<=>\\^~\\|`]+",
                    "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
                    "[0-9][0-9][0-9]",
                };
                break;
            case LLAMA_VOCAB_PRE_TYPE_STARCODER:
            case LLAMA_VOCAB_PRE_TYPE_REFACT:
            case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
            case LLAMA_VOCAB_PRE_TYPE_SMOLLM:
            case LLAMA_VOCAB_PRE_TYPE_CODESHELL:
            case LLAMA_VOCAB_PRE_TYPE_EXAONE:
            case LLAMA_VOCAB_PRE_TYPE_MINERVA:
                regex_exprs = {
                    "\\p{N}",
                    "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
                };
                break;
            case LLAMA_VOCAB_PRE_TYPE_GPT2:
            case LLAMA_VOCAB_PRE_TYPE_MPT:
            case LLAMA_VOCAB_PRE_TYPE_OLMO:
            case LLAMA_VOCAB_PRE_TYPE_JAIS:
                regex_exprs = {
                    "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
                };
                break;
            case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
            case LLAMA_VOCAB_PRE_TYPE_QWEN2:
                regex_exprs = {
                    // original regex from tokenizer.json
                    // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
                    "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
                };
                break;
            case LLAMA_VOCAB_PRE_TYPE_PORO:
            case LLAMA_VOCAB_PRE_TYPE_BLOOM:
            case LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH:
                regex_exprs = {
                    " ?[^(\\s|.,!?…。,、।۔،)]+",
                };
                break;
            case LLAMA_VOCAB_PRE_TYPE_CHATGLM4:
                regex_exprs = {
                    "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
                };
                break;
            case LLAMA_VOCAB_PRE_TYPE_VIKING:
                regex_exprs = {
                    " ?[^(\\s|.,!?…。,、।۔،)]+",
                    "\\p{N}",
                };
                break;
            case LLAMA_VOCAB_PRE_TYPE_TEKKEN:
                // original regex from tokenizer.json
                // "[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
                regex_exprs = {
                    "[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))*((?=[\\p{L}])([^A-Z]))+|[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))+((?=[\\p{L}])([^A-Z]))*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
                };
                break;
            case LLAMA_VOCAB_PRE_TYPE_CHAMELEON:
                // Note: in theory, the special token (sentinel and image token) regex_exprs below
                // are unnecessary, as they are split in `tokenizer_st_partition` anyway.
                // However, since the upstream pre-tokenizer uses them, they are also
                // included here (see https://huggingface.co/facebook/chameleon-7b).
                regex_exprs = {
                    "<sentinel:[0-9]+>",  // Sentinel tokens
                    "(IMGIMG)((A|B|C|D|E|F|G|H|I){1,4})Z",  // Image tokens
                    "([\\t\\n]|    |  )",  // directly from tokenizer.json
                    "\\p{N}", // Individual digits
                    "[\\p{P}!-/:-@\\[-`{-~]",  // Punctuation, Isolated
                    "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
                };
                break;
            default:
                // default regex for BPE tokenization pre-processing
                regex_exprs = {
                    "[\\p{P}\\$\\+<=>\\^~\\|]+",
                    "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
                    "\\p{N}+",
                    "[0-9][0-9][0-9]",
                };
                break;
        }
    }

    std::vector<std::string> regex_exprs;
};

struct llm_tokenizer_bpe_session {
    llm_tokenizer_bpe_session(const llama_vocab & vocab, const llm_tokenizer_bpe & tokenizer) : vocab(vocab), tokenizer(tokenizer) {}

    static void append(const llama_token token_id, std::vector<llama_token> & output)  {
        output.push_back(token_id);
    }

    bool append_bos(std::vector<llama_token> & output) const {
        if (vocab.get_add_bos()) {
            GGML_ASSERT(vocab.token_bos() != LLAMA_TOKEN_NULL);
            output.push_back(vocab.token_bos());
            return true;
        }
        return false;
    }

    bool append_eos(std::vector<llama_token> & output) const {
        if (vocab.get_add_eos()) {
            GGML_ASSERT(vocab.token_eos() != LLAMA_TOKEN_NULL);
            output.push_back(vocab.token_eos());
            return true;
        }
        return false;
    }

    void check_double_bos_eos(const std::vector<llama_token> & output) const {
        if (vocab.get_add_bos() && output.size() >= 2 && output[1] == vocab.token_bos()) {
            LLAMA_LOG_WARN(
                "%s: Added a BOS token to the prompt as specified by the model but the prompt "
                "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
                "Are you sure this is what you want?\n", __FUNCTION__);
        }
        if (vocab.get_add_eos() && output.size() >= 2 && *(output.end()-2) == vocab.token_eos()) {
            LLAMA_LOG_WARN(
                "%s: Added a EOS token to the prompt as specified by the model but the prompt "
                "also ends with a EOS token. So now the final prompt ends with 2 EOS tokens. "
                "Are you sure this is what you want?\n", __FUNCTION__);
        }
    }

    void tokenize(const std::string & text, std::vector<llama_token> & output) {
        int final_prev_index = -1;
        const auto word_collection = unicode_regex_split(text, tokenizer.regex_exprs);

        symbols_final.clear();

        for (const auto & word : word_collection) {
            work_queue = llm_bigram_bpe::queue();
            symbols.clear();

            int index = 0;
            size_t offset = 0;

            //if (vocab.tokenizer_ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
            if (vocab.get_ignore_merges() && vocab.text_to_token(word) != LLAMA_TOKEN_NULL) {
                symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
                offset = word.size();
            }

            while (offset < word.size()) {
                llm_symbol sym;
                size_t char_len = std::min(word.size() - offset, (size_t) unicode_len_utf8(word[offset]));
                sym.text = word.c_str() + offset;
                sym.n = char_len;
                offset += sym.n;
                sym.prev = index - 1;
                sym.next = offset == word.size() ? -1 : index + 1;
                index++;
                symbols.emplace_back(sym);
            }
            for (int i = 1; i < (int) symbols.size(); ++i) {
                add_new_bigram(i - 1, i);
            }

            // build token(s)
            while (!work_queue.empty()) {
                auto bigram = work_queue.pop_move();

                auto & left_symbol = symbols[bigram.left];
                auto & right_symbol = symbols[bigram.right];

                if (left_symbol.n == 0 || right_symbol.n == 0) {
                    continue;
                }
                std::string left_token = std::string(left_symbol.text, left_symbol.n);
                std::string right_token = std::string(right_symbol.text, right_symbol.n);
                if (left_token + right_token != bigram.text) {
                    continue;  // Skip this bigram if it's outdated
                }

                // merge the right sym into the left one
                left_symbol.n += right_symbol.n;
                right_symbol.n = 0;

                // remove the right sym from the chain
                left_symbol.next = right_symbol.next;
                if (right_symbol.next >= 0) {
                    symbols[right_symbol.next].prev = bigram.left;
                }

                add_new_bigram(left_symbol.prev, bigram.left);  // left side of current symbol
                add_new_bigram(bigram.left, left_symbol.next);  // right side of current symbol
            }

            // add the finished tokens to the final list keeping correct order for next and prev
            for (auto & sym : symbols) {
                if (sym.n > 0) {
                    sym.prev = final_prev_index;
                    sym.next = -1;
                    if (final_prev_index != -1) {
                        symbols_final[final_prev_index].next = symbols_final.size();
                    }
                    symbols_final.emplace_back(sym);
                    final_prev_index = symbols_final.size() - 1;
                }
            }
        }

        symbols = symbols_final;

        if (!symbols.empty()) {
            for (int i = 0; i != -1; i = symbols[i].next) {
                auto & symbol = symbols[i];
                if (symbol.n == 0) {
                    continue;
                }

                const std::string str = std::string(symbol.text, symbol.n);
                const auto token = vocab.text_to_token(str);

                if (token == LLAMA_TOKEN_NULL) {
                    for (auto j = str.begin(); j != str.end(); ++j) {
                        std::string byte_str(1, *j);
                        auto token_multibyte = vocab.text_to_token(byte_str);
                        if (token_multibyte != LLAMA_TOKEN_NULL) {
                            output.push_back(token_multibyte);
                        }
                    }
                } else {
                    output.push_back(token);
                }
            }
        }
    }

private:
    void add_new_bigram(int left, int right) {
        if (left == -1 || right == -1) {
            return;
        }
        std::string left_token  = std::string(symbols[left].text,  symbols[left].n);
        std::string right_token = std::string(symbols[right].text, symbols[right].n);

        int rank_found = -1;

        rank_found = vocab.find_bpe_rank(left_token, right_token);

        if (rank_found < 0) {
            return;
        }

        llm_bigram_bpe bigram;

        bigram.left  = left;
        bigram.right = right;
        bigram.text  = left_token + right_token;
        bigram.size  = left_token.size() + right_token.size();
        bigram.rank  = rank_found;

        work_queue.push(bigram);
    }

    const llama_vocab & vocab;
    const llm_tokenizer_bpe & tokenizer;

    std::vector<llm_symbol> symbols;
    std::vector<llm_symbol> symbols_final;
    llm_bigram_bpe::queue work_queue;
};

//
// WPM tokenizer
//

struct llm_tokenizer_wpm : llm_tokenizer {
    llm_tokenizer_wpm(const llama_vocab & /*vocab*/) {}
};

struct llm_tokenizer_wpm_session {
    llm_tokenizer_wpm_session(const llama_vocab & vocab) : vocab(vocab) {}

    void tokenize(const std::string & text, std::vector<llama_token> & output) {
        // normalize and split by whitespace
        std::vector<std::string> words = preprocess(text);
        // bos token prepended already

        // find the longest tokens that form the words
        for (const std::string & word : words) {
            // skip empty words
            if (word.size() == 0) {
                continue;
            }

            // prepend phantom space
            const std::string word1 = "\xe2\x96\x81" + word;
            const int n = word1.size();

            const size_t current_tokens = output.size();

            // we're at the start of a new word
            // move through character position in word
            for (int i = 0; i < n; ++i) {
                // loop through possible match length
                bool match = false;
                for (int j = std::min(n, i + vocab.max_token_len() + 1); j > i; j--) {
                    auto id = vocab.text_to_token(word1.substr(i, j - i));
                    if (id != LLAMA_TOKEN_NULL) {
                        output.push_back(id);
                        match = true;
                        i = j - 1;
                        break;
                    }
                }

                if (!match) { // discard all
                    output.resize(current_tokens);
                    break;  // and discard next tokens
                }
            }

            // we didn't find any matches for this word
            if (current_tokens == output.size()) {
                output.push_back(vocab.token_unk());
            }
        }
    }

    // TODO: reduce string copies by using cpts_offs array
    static std::vector<std::string> preprocess(const std::string & text)  {
        const std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
        std::vector<std::string> words(1, "");

        for (const uint32_t cpt : cpts_nfd) {
            const auto flags = unicode_cpt_flags_from_cpt(cpt);

            if (flags.is_whitespace) {
                if (words.back().size()) {  // finish previous word if any
                    words.emplace_back();
                }
                continue;
            }

            assert (!flags.is_separator);
            if (cpt == 0 || cpt == 0xFFFD || flags.is_control) {
                continue;
            }

            const std::string s = unicode_cpt_to_utf8(unicode_tolower(cpt));
            if (flags.is_punctuation || ( cpt < 0x7F && flags.is_symbol ) || is_chinese_char(cpt)) {
                if (words.back().size()) {  // finish previous word if any
                    words.emplace_back();
                }
                words.back() = s;       // single char word
                words.emplace_back();   // start a new word
            } else {
                words.back() += s;  // append char to word
            }
        }

        if (!words.back().size()) {
            words.pop_back();
        }

        return words;
    }

    static bool is_chinese_char(uint32_t cpt) {
        return
            (cpt >= 0x04E00 && cpt <= 0x09FFF) ||
            (cpt >= 0x03400 && cpt <= 0x04DBF) ||
            (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
            (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
            (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
            (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
            (cpt >= 0x0F900 && cpt <= 0x0FAFF) ||
            (cpt >= 0x2F800 && cpt <= 0x2FA1F);
            //(cpt >= 0x3000  && cpt <= 0x303F)  ||
            //(cpt >= 0xFF00  && cpt <= 0xFFEF);
    }

private:
    const llama_vocab & vocab;
    // currently unused
    // const llm_tokenizer_wpm * wpm_tokenizer;
};

//
// UGM tokenizer
//

struct llm_tokenizer_ugm : llm_tokenizer {
    llm_tokenizer_ugm(const llama_vocab & vocab, const std::vector<char> & precompiled_charsmap) {
        if (precompiled_charsmap.size() > 0) {
            size_t charsmap_offset = 0;

            // First four bytes of precompiled_charsmap contains length of binary
            // blob containing XOR-compressed compact double array (XCDA) entries
            uint32_t xcda_blob_size = *(const uint32_t *) &precompiled_charsmap[0];
            charsmap_offset += sizeof(xcda_blob_size);
            if (xcda_blob_size + charsmap_offset >= precompiled_charsmap.size()) {
                throw std::runtime_error("Index out of array bounds in precompiled charsmap!");
            }

            // Next xcda_blob_size bytes contain entries of XOR-compressed compact
            // double array (XCDA). Each entry is bit-packed into a 32-bit integer.
            xcda_array = (const uint32_t *) &precompiled_charsmap[charsmap_offset];
            xcda_array_size = xcda_blob_size / sizeof(uint32_t);
            charsmap_offset += xcda_blob_size;

            // Remaining bytes of precompiled charsmap contain null-terminated
            // replacement strings for prefixes matched by the XCDA.
            prefix_replacements = &precompiled_charsmap[charsmap_offset];
            prefix_replacements_size = precompiled_charsmap.size() - charsmap_offset;
        }

        for (uint32_t id = 0; id < vocab.n_tokens(); ++id) {
            const auto & token_data = vocab.get_token_data(id);

            if (vocab.is_normal(id)) {
                min_score = std::min<float>(min_score, token_data.score);
                max_score = std::max<float>(max_score, token_data.score);
            }

            if (vocab.is_normal(id) ||
                vocab.is_user_defined(id) ||
                vocab.is_unused(id)) {
                token_matcher.insert(token_data.text.data(), token_data.text.size(), id);
            }

            if (vocab.is_user_defined(id)) {
                user_defined_token_matcher.insert(token_data.text.data(), token_data.text.size());
            }
        }

        unknown_token_score = min_score - unknown_token_score_penalty;
    }

    // escaped space symbol - U+2581 (Lower One Eighth Block)
    const std::string escaped_space = "\xE2\x96\x81";

    const char * prefix_replacements = NULL;
    size_t prefix_replacements_size = 0;

    const uint32_t * xcda_array = NULL;
    size_t xcda_array_size = 0;

    struct naive_trie user_defined_token_matcher;

    float min_score = FLT_MAX;
    float max_score = -FLT_MAX;

    float unknown_token_score_penalty = 10.0;
    float unknown_token_score;

    struct naive_trie token_matcher;
};

struct llm_tokenizer_ugm_session {
    llm_tokenizer_ugm_session(const llama_vocab & vocab, const llm_tokenizer_ugm & tokenizer) : vocab(vocab), tokenizer(tokenizer) {}

    /* This implementation is based on SentencePiece optimized Viterbi algorithm for
     * unigram language models. The general idea is to:
     * - move along the input sequence in steps of one UTF code point,
     * - at each step find all possible tokenizations of the prefix by
     *   traversing the tokens trie,
     * - for each tokenization store the best one so far (by higher score)
     * - use the position in sequence after given token as an index to store
     *   results
     * - if there was no valid tokenization of the current UTF code point
     *   then use unknown token with additional score penalty
     * After processing the whole sequence we backtrack from the end to get
     * the best tokenization.
    */
    void tokenize(const std::string & text, std::vector<llama_token> & output) {
        // get current size of output (for reversal later)
        size_t output_size = output.size();

        // normalize the input first
        std::string normalized;
        normalize(text, &normalized);
        size_t input_len = normalized.size();
        if (input_len == 0) {
            return;
        }

        // initialize score_sum to -FLT_MAX so it will be always lower than sums of token scores
        std::vector<struct best_tokenization> tokenization_results(input_len + 1, {vocab.token_unk(), 0, -FLT_MAX});
        // at the beginning tokenization score is zero
        tokenization_results[0] = { vocab.token_unk(), 0, 0 };

        for (size_t input_offset = 0; input_offset < input_len;) {
            size_t prefix_offset = input_offset;
            // calculate how many code units are in the currently processed UTF code point
            size_t n_utf8_code_units = std::min<size_t>(unicode_len_utf8(normalized[input_offset]), input_len - input_offset);

            // traverse the token matcher trie to find a matching token
            bool single_codepoint_token_found = false;
            const struct best_tokenization & current_best = tokenization_results[input_offset];
            const struct naive_trie * node = tokenizer.token_matcher.traverse(normalized[prefix_offset++]);

            while (prefix_offset <= input_len && node != NULL) {
                // check if we found valid token in prefix
                if (node->has_value) {
                    // check if it corresponds to the whole UTF code point
                    if (prefix_offset - input_offset == n_utf8_code_units) {
                        single_codepoint_token_found = true;
                    }
                    llama_token token_id = node->value;
                    const auto & token_data = vocab.get_token_data(token_id);

                    // we set the user-defined token scores to 0 to make them more likely to be selected
                    // (normal token scores are log probabilities, so they are negative)
                    // score type is double here to make tokenization results exactly
                    // the same as in the HF tokenizer using SentencePiece
                    const double token_score = vocab.is_user_defined(token_id) ? 0.0 : token_data.score;
                    const double challenger_score = current_best.score_sum + token_score;
                    struct best_tokenization & current_champ = tokenization_results[prefix_offset];
                    if (challenger_score > current_champ.score_sum) {
                        struct best_tokenization challenger = { token_id, input_offset, (float) challenger_score };
                        current_champ = challenger;
                    }
                }
                node = node->traverse(normalized[prefix_offset++]);
            }

            // if we didn't find a valid token corresponding to the whole UTF code point
            // then use unknown token as the tokenization of this UTF code point
            if (!single_codepoint_token_found) {
                const double challenger_score = current_best.score_sum + tokenizer.unknown_token_score;
                prefix_offset = input_offset + n_utf8_code_units;
                struct best_tokenization & current_champ = tokenization_results[prefix_offset];
                if (challenger_score > current_champ.score_sum) {
                    struct best_tokenization challenger = { vocab.token_unk(), input_offset, (float) challenger_score };
                    current_champ = challenger;
                }
            }

            // move to the next UTF code point
            input_offset += n_utf8_code_units;
        }

        // now backtrack from the end to gather token ids of the best tokenization
        // merge sequences of consecutive unknown tokens into single unknown tokens
        bool is_prev_unknown = false;
        for (struct best_tokenization & tokenization = tokenization_results[input_len]; ; tokenization = tokenization_results[tokenization.input_offset]) {
            bool is_unknown = tokenization.token_id == vocab.token_unk();
            if (!(is_prev_unknown && is_unknown)) {
                output.push_back(tokenization.token_id);
            }
            if (tokenization.input_offset == 0) {
                break;
            }
            is_prev_unknown = is_unknown;
        }

        // reverse the output since we added tokens starting from the end of the input
        std::reverse(output.begin() + output_size, output.end());
    }

private:

    // helper structure for returning normalization results
    struct normalization_result {
        const char * normalized;
        size_t normalized_len;
        size_t consumed_input;
    };

    void normalize(const std::string& input, std::string * normalized) {
        normalized->clear();
        normalized->reserve(input.size() * 3);

        const std::string space = vocab.get_escape_whitespaces() ? tokenizer.escaped_space : " ";

        const bool shall_prepend_space = !vocab.get_treat_whitespace_as_suffix() && vocab.get_add_space_prefix();
        const bool shall_append_space  =  vocab.get_treat_whitespace_as_suffix() && vocab.get_add_space_prefix();
        const bool shall_merge_spaces  =  vocab.get_remove_extra_whitespaces();

        bool is_space_prepended = false;
        bool processing_non_ws = false;

        size_t input_len = input.size();

        for (size_t input_offset = 0; input_offset < input_len; ) {
            auto norm_res = normalize_prefix(input, input_offset);
            for (size_t i = 0; i < norm_res.normalized_len; i++) {
                char c = norm_res.normalized[i];
                if (c != ' ') {
                    if (!processing_non_ws) {
                        processing_non_ws = true;
                        if ((shall_prepend_space && !is_space_prepended) || shall_merge_spaces) {
                            normalized->append(space);
                            is_space_prepended = true;
                        }
                    }
                    normalized->push_back(c);
                } else {
                    if (processing_non_ws) {
                        processing_non_ws = false;
                    }
                    if (!shall_merge_spaces) {
                        normalized->append(space);
                    }
                }
            }

            input_offset += norm_res.consumed_input;
        }

        if (shall_append_space) {
            normalized->append(space);
        }
    }

    /*
     * This structure is a view wrapper for XOR-compressed double array (XCDA)
     * See Shunsuke Kanda (2018). Space- and Time-Efficient String Dictionaries.
     * Each bit-packed entry contains:
     * - BASE array value in bits 10-30
     * - LCHECK array value in bits 0-7
     * - LEAF array value in bit 9
     * Entries containing indexes of replacement sequences have set bit 31
     */
    struct xcda_array_view {
    public:
        xcda_array_view(const uint32_t * xcda_array, size_t xcda_array_size) : xcda_array(xcda_array), xcda_array_size(xcda_array_size) {
        }
        uint32_t get_base(size_t index) {
            uint32_t packed_node = get_node(index);
            return (packed_node >> 10) << ((packed_node & (1U << 9)) >> 6);
        }
        uint32_t get_lcheck(size_t index) {
            uint32_t packed_node = get_node(index);
            return packed_node & ((1U << 31) | 0xff);
        }
        bool get_leaf(size_t index) {
            uint32_t packed_node = get_node(index);
            return (packed_node >> 8) & 1;
        }
        uint32_t get_value(size_t index) {
            uint32_t packed_node = get_node(index);
            return packed_node & ((1U << 31) - 1);
        }
    private:
        uint32_t get_node(size_t index) {
            if (index > xcda_array_size) {
                throw std::runtime_error("Index out of array bounds in XCDA array!");
            }
            return xcda_array[index];
        }
        const uint32_t * xcda_array;
        size_t xcda_array_size;
    };

    // this structure stores the best tokenization so far at input_offset
    struct best_tokenization {
        llama_token token_id;
        size_t input_offset;
        float score_sum;
    };

    struct normalization_result normalize_prefix(const std::string & input, size_t input_offset) {
        if (input_offset == input.size()) {
            return { &input[input_offset], 0, 0 };
        }

        // if input prefix matches some user-defined token return this token as normalization result
        auto user_defined_token_match =
           tokenizer.user_defined_token_matcher.get_longest_prefix(&input[input_offset], input.size() - input_offset);
        if (user_defined_token_match.second > 0) {
            return { &input[input_offset], user_defined_token_match.second, user_defined_token_match.second };
        }

        size_t longest_prefix_length = 0;
        size_t longest_prefix_offset = 0;

        if (tokenizer.xcda_array_size > 0) {
            struct xcda_array_view xcda_view(tokenizer.xcda_array, tokenizer.xcda_array_size);

            // Find the longest normalized sequence matching the input prefix by walking
            // the XOR-compressed compact double array (XCDA) starting from the root node
            // We find the index of the next node by calculating BASE[s] ^ c where s is
            // the index of the previous node and c is a numerical character value
            uint32_t node_index = 0;
            // get BASE of the root node
            node_index = xcda_view.get_base(node_index);
            for (size_t prefix_offset = input_offset; prefix_offset < input.size(); prefix_offset++) {
                unsigned char c = input[prefix_offset];
                if (c == 0) {
                    break;
                }
                node_index ^= c;
                // if value of LCHECK is not c it means that this is not a child of
                // the previous node, so we stop matching
                if (xcda_view.get_lcheck(node_index) != c) {
                    break;
                }
                bool is_leaf = xcda_view.get_leaf(node_index);
                // get BASE of the current node
                node_index ^= xcda_view.get_base(node_index);
                // if LEAF of the current node is true, it means that its BASE points to the node
                // containing index of replacement sequence for currently matched input prefix
                if (is_leaf)
                {
                    longest_prefix_length = prefix_offset - input_offset + 1;
                    // get index of replacement sequence for currently matched input prefix
                    longest_prefix_offset = xcda_view.get_value(node_index);
                }
            }
        }

        if (longest_prefix_length > 0) {
            // we have a match, so return the replacement sequence
            if (longest_prefix_offset >= tokenizer.prefix_replacements_size) {
                throw std::runtime_error("Index out of array bounds in precompiled charsmap!");
            }
            const char * prefix_replacement = &(tokenizer.prefix_replacements)[longest_prefix_offset];
            return { prefix_replacement, strlen(prefix_replacement), longest_prefix_length };
        }

        // check if the input prefix contains a valid sequence of UTF-8 code units
        try {
            // if yes, return this sequence unmodified
            size_t prefix_offset = input_offset;
            unicode_cpt_from_utf8(input, prefix_offset);
            return { &input[input_offset], prefix_offset - input_offset, prefix_offset - input_offset };
        } catch (std::invalid_argument & /*ex*/) {
            // if no, consume 1 byte and return U+FFFD - REPLACEMENT CHARACTER
            return { "\xEF\xBF\xBD", 3, 1 };
        }
    }

    const llama_vocab & vocab;
    const llm_tokenizer_ugm & tokenizer;
};

//
// RWKV tokenizer
//

static std::vector<uint8_t> llama_unescape_rwkv_token(const std::string & escaped) {
    std::vector<uint8_t> output;
    output.reserve(escaped.size());

    // Parser state
    bool escaping = false;
    uint8_t hex_remaining = 0;
    uint8_t hex_acc = 0;

    // Step through characters, performing parsing
    for (const char & c : escaped) {
        // If we're parsing a hex code, interpret the next character
        if (hex_remaining != 0) {
            uint8_t value = (c >= 'a') ? (c - 'a' + 10) : (c - '0');
            hex_acc = (hex_acc << 4) + value;

            hex_remaining -= 1;
            if (hex_remaining == 0) {
                output.push_back(hex_acc);
                hex_acc = 0;
            }

            continue;
        }

        // If we got an escape character, interpret it
        if (escaping) {
            if (c == 't') {
                output.push_back('\t');
            } else if (c == 'n') {
                output.push_back('\n');
            } else if (c == 'r') {
                output.push_back('\r');
            } else if (c == 'x') {
                hex_remaining = 2;
            } else {
                output.push_back(c);
            }

            escaping = false;
            continue;
        }

        if (c == '\\') {
            escaping = true;
            continue;
        }

        output.push_back(c);
    }

    return output;
}

struct llm_tokenizer_rwkv : llm_tokenizer {
    llm_tokenizer_rwkv(const llama_vocab & vocab) {
        // RWKV supports arbitrary byte tokens, but the vocab struct only supports string tokens.
        // For now, we decode the vocab here into the lookup we'll use for tokenization.

        // build trie
        for (uint32_t id = 0; id < vocab.n_tokens(); ++id) {
            const auto & data = vocab.get_token_data(id);
            const auto text = llama_unescape_rwkv_token(data.text);
            token_matcher.insert((const char *) text.data(), text.size(), id);
        }
    }

    struct naive_trie token_matcher;
};

struct llm_tokenizer_rwkv_session {
    llm_tokenizer_rwkv_session(const llama_vocab & vocab, const llm_tokenizer_rwkv & tokenizer) : vocab(vocab), tokenizer(tokenizer) {}

    void tokenize(const std::string & text, std::vector<llama_token> & output) {
        uint32_t position = 0;
        while (position < text.size()) {
            const struct naive_trie * node = tokenizer.token_matcher.traverse(text[position]);
            if (node == NULL) {
                // no matching token found, add unknown token
                output.push_back(vocab.token_unk());
                position += 1;
                continue;
            }

            // traverse the trie to find the longest matching token
            uint32_t token_id = 0;
            uint32_t token_length = 0;
            while (node != NULL) {
                if (node->has_value) {
                    token_id = node->value;
                    token_length = position + 1;
                }
                node = node->traverse(text[++position]);
            }

            // add the longest matching token
            output.push_back(token_id);
            position = token_length;
        }
    }

private:
    const llama_vocab & vocab;
    const llm_tokenizer_rwkv & tokenizer;
};

//
// impl
//

typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
    FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
    FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
} FRAGMENT_BUFFER_VARIANT_TYPE;

struct fragment_buffer_variant {
    fragment_buffer_variant(llama_token _token)
    :
        type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
        token(_token),
        raw_text(_dummy),
        offset(0),
        length(0) {}

    fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
    :
        type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
        token((llama_token) - 1),
        raw_text(_raw_text),
        offset(_offset),
        length(_length){
            GGML_ASSERT(_offset >= 0);
            GGML_ASSERT(_length >= 1);
            GGML_ASSERT(offset + length <= raw_text.length());
        }

    const FRAGMENT_BUFFER_VARIANT_TYPE type;
    const llama_token token;
    const std::string _dummy;
    const std::string & raw_text;
    const uint64_t offset;
    const uint64_t length;
};

struct llama_vocab::impl {
    uint32_t n_token_types = 0; // for BERT-style token types

    enum llama_vocab_type     type     = LLAMA_VOCAB_TYPE_SPM;
    enum llama_vocab_pre_type pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;

    int max_token_len = 0; // used for optimizing longest token search

    // default LLaMA special tokens
    // TODO: should we set all of these to LLAMA_TOKEN_NULL?
    llama_token special_bos_id  = 1;
    llama_token special_eos_id  = 2;
    llama_token special_eot_id  = LLAMA_TOKEN_NULL;
    llama_token special_eom_id  = LLAMA_TOKEN_NULL;
    llama_token special_unk_id  = 0;
    llama_token special_sep_id  = LLAMA_TOKEN_NULL;
    llama_token special_pad_id  = LLAMA_TOKEN_NULL;
    llama_token special_mask_id = LLAMA_TOKEN_NULL;

    llama_token linefeed_id = 13;

    // fim tokens
    llama_token special_fim_pre_id = LLAMA_TOKEN_NULL;
    llama_token special_fim_suf_id = LLAMA_TOKEN_NULL;
    llama_token special_fim_mid_id = LLAMA_TOKEN_NULL;
    llama_token special_fim_pad_id = LLAMA_TOKEN_NULL;
    llama_token special_fim_rep_id = LLAMA_TOKEN_NULL; // repo
    llama_token special_fim_sep_id = LLAMA_TOKEN_NULL; // file separator

    // tokenizer flags
    bool add_space_prefix           = false;
    bool add_bos                    = false;
    bool add_eos                    = false;
    bool ignore_merges              = false;
    bool clean_spaces               = false;  // clean_up_tokenization_spaces
    bool remove_extra_whitespaces   = false;
    bool escape_whitespaces         = true;
    bool treat_whitespace_as_suffix = false;

    std::unordered_map<std::string, llama_token> token_to_id;
    std::vector<token_data>                      id_to_token;

    std::vector<llama_token> cache_special_tokens;
    std::vector<std::string> cache_token_to_piece; // llama_token_to_piece(special = true);
    struct pair_hash {
        size_t operator()(const std::pair<std::string, std::string> & p) const {
            return std::hash<std::string>{}(p.first) ^  //create some hash for pair
                   (std::hash<std::string>{}(p.second) << 1);
        }
    };
    std::unordered_map<std::pair<std::string, std::string>, int, pair_hash> bpe_ranks;

    // set of all tokens that cause "end of generation"
    std::set<llama_token> special_eog_ids;

    std::unique_ptr<llm_tokenizer> tokenizer;

    std::vector<char> precompiled_charsmap;

    impl(const llama_vocab & vocab) : vocab(vocab) {
    }

    ~impl() = default;

    void load(llama_model_loader & ml, const LLM_KV & kv);

    enum llama_vocab_type get_type() const;

    std::string type_name() const;

    bool is_normal      (llama_token id) const;
    bool is_unknown     (llama_token id) const;
    bool is_control     (llama_token id) const;
    bool is_byte        (llama_token id) const;
    bool is_user_defined(llama_token id) const;
    bool is_unused      (llama_token id) const;
    bool is_eog         (llama_token id) const;

    uint8_t token_to_byte(llama_token id) const;

    llama_token_attr token_get_attr(llama_token id) const;

    void init_tokenizer(enum llama_vocab_type type);

    void tokenizer_st_partition(std::forward_list<fragment_buffer_variant> & buffer, bool parse_special) const;

    std::string token_to_piece_for_cache(
                  llama_token   token,
                         bool   special) const;


    std::vector<llama_token> tokenize(
            const std::string & raw_text,
                         bool   add_special,
                         bool   parse_special = false) const;

    int32_t tokenize(
                   const char * text,
                      int32_t   text_len,
                  llama_token * tokens,
                      int32_t   n_tokens_max,
                         bool   add_special,
                         bool   parse_special) const;

    // does not write null-terminator to buf
    int32_t token_to_piece(
                  llama_token   token,
                         char * buf,
                      int32_t   length,
                      int32_t   lstrip,
                         bool   special) const;

    // use cached data
    const std::string & token_to_piece(llama_token token) const;

    int32_t detokenize(
            const llama_token * tokens,
                      int32_t   n_tokens,
                         char * text,
                      int32_t   text_len_max,
                         bool   remove_special,
                         bool   unparse_special) const;

    std::string detokenize(
            const std::vector<llama_token> & tokens,
                                      bool   special) const;

    void print_info() const;

private:
    const llama_vocab & vocab;
};

void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
    struct gguf_context * ctx = ml.meta.get();

    // determine vocab type
    {
        std::string tokenizer_model;
        std::string tokenizer_pre;

        ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
        ml.get_key(LLM_KV_TOKENIZER_PRE,   tokenizer_pre, false);

        ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, n_token_types, false);

        if (tokenizer_model == "no_vocab" || tokenizer_model == "none") {
            type = LLAMA_VOCAB_TYPE_NONE;

            // default special tokens
            special_bos_id  = LLAMA_TOKEN_NULL;
            special_eos_id  = LLAMA_TOKEN_NULL;
            special_unk_id  = LLAMA_TOKEN_NULL;
            special_sep_id  = LLAMA_TOKEN_NULL;
            special_pad_id  = LLAMA_TOKEN_NULL;
            special_mask_id = LLAMA_TOKEN_NULL;
            linefeed_id     = LLAMA_TOKEN_NULL;

            // read vocab size from metadata
            uint32_t n_tokens = 0;
            if (ml.get_key(LLM_KV_VOCAB_SIZE, n_tokens, false)) {
                LLAMA_LOG_WARN("%s: adding %u dummy tokens\n", __func__, n_tokens);
                id_to_token.resize(n_tokens);
            }

            return;
        }

        if (tokenizer_model == "llama") {
            type = LLAMA_VOCAB_TYPE_SPM;

            // default special tokens
            special_bos_id  = 1;
            special_eos_id  = 2;
            special_unk_id  = 0;
            special_sep_id  = LLAMA_TOKEN_NULL;
            special_pad_id  = LLAMA_TOKEN_NULL;
            special_mask_id = LLAMA_TOKEN_NULL;
        } else if (tokenizer_model == "bert") {
            type = LLAMA_VOCAB_TYPE_WPM;

            // default special tokens
            special_bos_id  = 101;
            special_eos_id  = LLAMA_TOKEN_NULL;
            special_unk_id  = 100;
            special_sep_id  = 102;
            special_pad_id  = 0;
            special_mask_id = 103;
        } else if (tokenizer_model == "gpt2") {
            type = LLAMA_VOCAB_TYPE_BPE;

            // read bpe merges and populate bpe ranks
            const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
            if (merges_keyidx == -1) {
                throw std::runtime_error("cannot find tokenizer merges in model file\n");
            }

            const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
            for (int i = 0; i < n_merges; i++) {
                const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
                //GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);

                std::string first;
                std::string second;

                const size_t pos = word.find(' ', 1);

                if (pos != std::string::npos) {
                    first  = word.substr(0, pos);
                    second = word.substr(pos + 1);
                }

                bpe_ranks.emplace(std::make_pair(first, second), i);
            }

            // default special tokens
            special_bos_id  = 11;
            special_eos_id  = 11;
            special_unk_id  = LLAMA_TOKEN_NULL;
            special_sep_id  = LLAMA_TOKEN_NULL;
            special_pad_id  = LLAMA_TOKEN_NULL;
            special_mask_id = LLAMA_TOKEN_NULL;
        } else if (tokenizer_model == "t5") {
            type = LLAMA_VOCAB_TYPE_UGM;

            // default special tokens
            special_bos_id  = LLAMA_TOKEN_NULL;
            special_eos_id  = 1;
            special_unk_id  = 2;
            special_sep_id  = LLAMA_TOKEN_NULL;
            special_pad_id  = 0;
            special_mask_id = LLAMA_TOKEN_NULL;

            const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str());
            if (precompiled_charsmap_keyidx != -1) {
                size_t n_precompiled_charsmap = gguf_get_arr_n(ctx, precompiled_charsmap_keyidx);
                const char * pc = (const char *) gguf_get_arr_data(ctx, precompiled_charsmap_keyidx);
                precompiled_charsmap.assign(pc, pc + n_precompiled_charsmap);
#ifdef IS_BIG_ENDIAN
                // correct endiannes of data in precompiled_charsmap binary blob
                uint32_t * xcda_blob_size = (uint32_t *) &precompiled_charsmap[0];
                *xcda_blob_size = __builtin_bswap32(*xcda_blob_size);
                assert(*xcda_blob_size + sizeof(uint32_t) < n_precompiled_charsmap);
                size_t xcda_array_size = *xcda_blob_size / sizeof(uint32_t);
                uint32_t * xcda_array = (uint32_t *) &precompiled_charsmap[sizeof(uint32_t)];
                for (size_t i = 0; i < xcda_array_size; ++i) {
                    xcda_array[i] = __builtin_bswap32(xcda_array[i]);
                }
#endif
            }
        } else if (tokenizer_model == "rwkv") {
            type = LLAMA_VOCAB_TYPE_RWKV;

            // default special tokens
            special_bos_id = LLAMA_TOKEN_NULL;
            special_eos_id = LLAMA_TOKEN_NULL;
            special_unk_id = LLAMA_TOKEN_NULL;
            special_sep_id = LLAMA_TOKEN_NULL;
            special_pad_id = LLAMA_TOKEN_NULL;
        } else {
            throw std::runtime_error(format("unknown tokenizer: '%s'", tokenizer_model.c_str()));
        }

        // for now, only BPE models have pre-tokenizers
        if (type == LLAMA_VOCAB_TYPE_BPE) {
            add_space_prefix = false;
            clean_spaces = true;
            if (tokenizer_pre.empty()) {
                LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
                LLAMA_LOG_WARN("%s:                                             \n", __func__);
                LLAMA_LOG_WARN("%s: ************************************        \n", __func__);
                LLAMA_LOG_WARN("%s: GENERATION QUALITY WILL BE DEGRADED!        \n", __func__);
                LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL             \n", __func__);
                LLAMA_LOG_WARN("%s: ************************************        \n", __func__);
                LLAMA_LOG_WARN("%s:                                             \n", __func__);
                pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
            } else if (tokenizer_pre == "default") {
                pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
            } else if (
                    tokenizer_pre == "llama3"   ||
                    tokenizer_pre == "llama-v3" ||
                    tokenizer_pre == "llama-bpe"||
                    tokenizer_pre == "falcon3") {
                pre_type = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
                ignore_merges = true;
                add_bos = true;
            } else if (
                    tokenizer_pre == "deepseek-llm") {
                pre_type = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
                clean_spaces = false;
            } else if (
                    tokenizer_pre == "deepseek-coder") {
                pre_type = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
                clean_spaces = false;
            } else if (
                    tokenizer_pre == "deepseek-v3") {
                pre_type = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM;
                clean_spaces = false;
            } else if (
                    tokenizer_pre == "falcon") {
                pre_type = LLAMA_VOCAB_PRE_TYPE_FALCON;
            } else if (
                    tokenizer_pre == "mpt") {
                pre_type = LLAMA_VOCAB_PRE_TYPE_MPT;
            } else if (
                    tokenizer_pre == "starcoder") {
                pre_type = LLAMA_VOCAB_PRE_TYPE_STARCODER;
            } else if (
                    tokenizer_pre == "gpt-2"   ||
                    tokenizer_pre == "phi-2"   ||
                    tokenizer_pre == "jina-es" ||
                    tokenizer_pre == "jina-de" ||
                    tokenizer_pre == "gigachat"   ||
                    tokenizer_pre == "jina-v1-en" ||
                    tokenizer_pre == "jina-v2-es" ||
                    tokenizer_pre == "jina-v2-de" ||
                    tokenizer_pre == "jina-v2-code" ||
                    tokenizer_pre == "roberta-bpe") {
                pre_type = LLAMA_VOCAB_PRE_TYPE_GPT2;
            } else if (
                    tokenizer_pre == "refact") {
                pre_type = LLAMA_VOCAB_PRE_TYPE_REFACT;
            } else if (
                tokenizer_pre == "command-r") {
                pre_type = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
                clean_spaces = false;
            } else if (
                    tokenizer_pre == "qwen2" ||
                    tokenizer_pre == "deepseek-r1-qwen") {
                pre_type = LLAMA_VOCAB_PRE_TYPE_QWEN2;
                clean_spaces = false;
            } else if (
                tokenizer_pre == "stablelm2") {
                pre_type = LLAMA_VOCAB_PRE_TYPE_STABLELM2;
            } else if (
                tokenizer_pre == "olmo") {
                pre_type = LLAMA_VOCAB_PRE_TYPE_OLMO;
            } else if (
                tokenizer_pre == "dbrx") {
                pre_type = LLAMA_VOCAB_PRE_TYPE_DBRX;
            } else if (
                tokenizer_pre == "smaug-bpe") {
                pre_type = LLAMA_VOCAB_PRE_TYPE_SMAUG;
            } else if (
                tokenizer_pre == "poro-chat") {
                pre_type = LLAMA_VOCAB_PRE_TYPE_PORO;
                clean_spaces = false;
            } else if (
                tokenizer_pre == "chatglm-bpe") {
                pre_type = LLAMA_VOCAB_PRE_TYPE_CHATGLM4;
                special_bos_id = LLAMA_TOKEN_NULL;
            } else if (
                tokenizer_pre == "viking") {
                pre_type = LLAMA_VOCAB_PRE_TYPE_VIKING;
                clean_spaces = false;
            } else if (
                tokenizer_pre == "jais") {
                pre_type = LLAMA_VOCAB_PRE_TYPE_JAIS;
            } else if (
                tokenizer_pre == "tekken") {
                pre_type = LLAMA_VOCAB_PRE_TYPE_TEKKEN;
                clean_spaces = false;
                ignore_merges = true;
                add_bos = true;
            } else if (
                tokenizer_pre == "smollm") {
                pre_type = LLAMA_VOCAB_PRE_TYPE_SMOLLM;
                clean_spaces = false;
            } else if (
                tokenizer_pre == "codeshell") {
                pre_type = LLAMA_VOCAB_PRE_TYPE_CODESHELL;
            } else if (
                tokenizer_pre == "bloom") {
                pre_type = LLAMA_VOCAB_PRE_TYPE_BLOOM;
            } else if (
                tokenizer_pre == "gpt3-finnish") {
                pre_type = LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH;
            } else if (
                tokenizer_pre == "exaone") {
                pre_type = LLAMA_VOCAB_PRE_TYPE_EXAONE;
            } else if (
                tokenizer_pre == "chameleon") {
                pre_type = LLAMA_VOCAB_PRE_TYPE_CHAMELEON;
                add_bos = true;
                clean_spaces = false;
            } else if (
                tokenizer_pre == "minerva-7b") {
                pre_type = LLAMA_VOCAB_PRE_TYPE_MINERVA;
            } else if (
                tokenizer_pre == "megrez") {
                pre_type = LLAMA_VOCAB_PRE_TYPE_QWEN2;
            } else {
                throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
            }
        } else if (type == LLAMA_VOCAB_TYPE_SPM) {
            pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
            add_space_prefix = true;
            clean_spaces = false;
            add_bos = true;
            add_eos = false;
        } else if (type == LLAMA_VOCAB_TYPE_WPM) {
            pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
            add_space_prefix = false;
            clean_spaces = true;
            add_bos = true;
            add_eos = false;
        } else if (type == LLAMA_VOCAB_TYPE_UGM) {
            pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
            add_bos = false;
            add_eos = true;
        } else if (type == LLAMA_VOCAB_TYPE_RWKV) {
            pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
            add_space_prefix = false;
            clean_spaces = false;
            add_bos = false;
            add_eos = false;
        } else {
            pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
        }

        ml.get_key(LLM_KV_TOKENIZER_ADD_PREFIX,      add_space_prefix,         false);
        ml.get_key(LLM_KV_TOKENIZER_REMOVE_EXTRA_WS, remove_extra_whitespaces, false);
    }

    const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
    if (token_idx == -1) {
        throw std::runtime_error("cannot find tokenizer vocab in model file\n");
    }

    const float * scores = nullptr;
    const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
    if (score_idx != -1) {
        scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
    }

    const int * toktypes = nullptr;
    const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
    if (toktype_idx != -1) {
        toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
    }

    uint32_t n_tokens = gguf_get_arr_n(ctx, token_idx);
    id_to_token.resize(n_tokens);

    for (uint32_t i = 0; i < n_tokens; i++) {
        std::string word = gguf_get_arr_str(ctx, token_idx, i);
        if (word.empty()) {
            LLAMA_LOG_WARN("%s: empty token at index %u\n", __func__, i);
            word = "[EMPTY_" + std::to_string(i) + "]";
        }

        token_to_id[word] = i;
        max_token_len = std::max(max_token_len, (int) word.size());

        auto & token_data = id_to_token[i];
        token_data.text  = std::move(word);
        token_data.score = scores ? scores[i] : 0.0f;
        token_data.attr  = LLAMA_TOKEN_ATTR_NORMAL;

        if (toktypes) {  //TODO: remove, required until per token attributes are available from GGUF file
            switch(toktypes[i]) {
                case LLAMA_TOKEN_TYPE_UNKNOWN:      token_data.attr = LLAMA_TOKEN_ATTR_UNKNOWN;      break;
                case LLAMA_TOKEN_TYPE_UNUSED:       token_data.attr = LLAMA_TOKEN_ATTR_UNUSED;       break;
                case LLAMA_TOKEN_TYPE_NORMAL:       token_data.attr = LLAMA_TOKEN_ATTR_NORMAL;       break;
                case LLAMA_TOKEN_TYPE_CONTROL:      token_data.attr = LLAMA_TOKEN_ATTR_CONTROL;      break;
                case LLAMA_TOKEN_TYPE_USER_DEFINED: token_data.attr = LLAMA_TOKEN_ATTR_USER_DEFINED; break;
                case LLAMA_TOKEN_TYPE_BYTE:         token_data.attr = LLAMA_TOKEN_ATTR_BYTE;         break;
                case LLAMA_TOKEN_TYPE_UNDEFINED:    token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED;    break;
                default:                            token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED;    break;
            }
        }
    }
    GGML_ASSERT(id_to_token.size() == token_to_id.size());

    init_tokenizer(type);

    // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
    if (type == LLAMA_VOCAB_TYPE_SPM) {
        try {
            linefeed_id = vocab.byte_to_token('\n');
        } catch (const std::exception & e) {
            LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
            linefeed_id = special_pad_id;
        }
    } else if (type == LLAMA_VOCAB_TYPE_WPM) {
        linefeed_id = special_pad_id;
    } else if (type == LLAMA_VOCAB_TYPE_RWKV) {
        const std::vector<int> ids = tokenize("\n", false);
        GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
        linefeed_id = ids[0];
    } else {
        const std::vector<int> ids = tokenize("\n", false);

        //GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
        if (ids.empty()) {
            LLAMA_LOG_WARN("%s: model vocab missing newline token, using special_pad_id instead\n", __func__);
            linefeed_id = special_pad_id;
        } else {
            linefeed_id = ids[0];
        }
    }

    // special tokens
    {
        const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
            { LLM_KV_TOKENIZER_BOS_ID,     special_bos_id     },
            { LLM_KV_TOKENIZER_EOS_ID,     special_eos_id     },
            { LLM_KV_TOKENIZER_EOT_ID,     special_eot_id     },
            { LLM_KV_TOKENIZER_EOM_ID,     special_eom_id     },
            { LLM_KV_TOKENIZER_UNK_ID,     special_unk_id     },
            { LLM_KV_TOKENIZER_SEP_ID,     special_sep_id     },
            { LLM_KV_TOKENIZER_PAD_ID,     special_pad_id     },
            { LLM_KV_TOKENIZER_MASK_ID,    special_mask_id    },
            { LLM_KV_TOKENIZER_FIM_PRE_ID, special_fim_pre_id },
            { LLM_KV_TOKENIZER_FIM_SUF_ID, special_fim_suf_id },
            { LLM_KV_TOKENIZER_FIM_MID_ID, special_fim_mid_id },
            { LLM_KV_TOKENIZER_FIM_PAD_ID, special_fim_pad_id },
            { LLM_KV_TOKENIZER_FIM_REP_ID, special_fim_rep_id },
            { LLM_KV_TOKENIZER_FIM_SEP_ID, special_fim_sep_id },

            // deprecated
            { LLM_KV_TOKENIZER_PREFIX_ID, special_fim_pre_id },
            { LLM_KV_TOKENIZER_SUFFIX_ID, special_fim_suf_id },
            { LLM_KV_TOKENIZER_MIDDLE_ID, special_fim_mid_id },
        };

        for (const auto & it : special_token_types) {
            const std::string & key = kv(std::get<0>(it));
            int32_t & id = std::get<1>(it);

            uint32_t new_id;
            if (!ml.get_key(std::get<0>(it), new_id, false)) {
                continue;
            }
            if (new_id >= id_to_token.size()) {
                LLAMA_LOG_WARN("%s: bad special token: '%s' = %u, using default id %d\n",
                    __func__, key.c_str(), new_id, id);
            } else {
                id = new_id;
            }
        }

        // Handle add_bos and add_eos
        {
            bool temp = true;

            if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
                add_bos = temp;
            }
            if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
                add_eos = temp;
            }
        }

        // auto-detect special tokens by text
        // TODO: convert scripts should provide these tokens through the KV metadata LLM_KV_TOKENIZER_...
        //       for now, we apply this workaround to find the tokens based on their text

        for (const auto & t : token_to_id) {
            // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
            if (special_eot_id == LLAMA_TOKEN_NULL) {
                if (false
                        || t.first == "<|eot_id|>"
                        || t.first == "<|im_end|>"
                        || t.first == "<|end|>"
                        || t.first == "<end_of_turn>"
                        || t.first == "<|endoftext|>"
                        || t.first == "<EOT>"
                        || t.first == "<|end▁of▁sentence|>" // DeepSeek
                   ) {
                    special_eot_id = t.second;
                    if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
                        LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
                                __func__, t.second, t.first.c_str());
                        id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
                    }
                }
            }

            // find EOM token: "<|eom_id|>"
            if (special_eom_id == LLAMA_TOKEN_NULL) {
                if (false
                        || t.first == "<|eom_id|>"
                        ) {
                    special_eom_id = t.second;
                    if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
                        LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
                                __func__, t.second, t.first.c_str());
                        id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
                    }
                }
            }

            // find FIM_PRE token: "<|fim_prefix|>", "<fim-prefix>", "<PRE>", etc.
            if (special_fim_pre_id == LLAMA_TOKEN_NULL) {
                if (false
                        || t.first == "<|fim_prefix|>"  // Qwen
                        || t.first == "<fim-prefix>"
                        || t.first == "<|fim▁begin|>" // DeepSeek
                        || t.first == "<PRE>"
                        ) {
                    special_fim_pre_id = t.second;
                    if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
                        LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
                                __func__, t.second, t.first.c_str());
                        id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
                    }
                }
            }

            // find FIM_SUF token: "<|fim_suffix|>", "<fim-suffix>", "<SUF>", etc.
            if (special_fim_suf_id == LLAMA_TOKEN_NULL) {
                if (false
                        || t.first == "<|fim_suffix|>" // Qwen
                        || t.first == "<fim-suffix>"
                        || t.first == "<|fim▁hole|>" // DeepSeek
                        || t.first == "<SUF>"
                        ) {
                    special_fim_suf_id = t.second;
                    if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
                        LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
                                __func__, t.second, t.first.c_str());
                        id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
                    }
                }
            }

            // find FIM_MID token: "<|fim_middle|>", "<fim-middle>", "<MID>", etc.
            if (special_fim_mid_id == LLAMA_TOKEN_NULL) {
                if (false
                        || t.first == "<|fim_middle|>" // Qwen
                        || t.first == "<fim-middle>"
                        || t.first == "<|fim▁end|>"  // DeepSeek
                        || t.first == "<MID>"
                        ) {
                    special_fim_mid_id = t.second;
                    if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
                        LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
                                __func__, t.second, t.first.c_str());
                        id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
                    }
                }
            }

            // find FIM_PAD token: "<|fim_pad|>", "<fim-pad>", "<PAD>", etc.
            if (special_fim_pad_id == LLAMA_TOKEN_NULL) {
                if (false
                        || t.first == "<|fim_pad|>" // Qwen
                        || t.first == "<fim-pad>"
                        || t.first == "<PAD>"
                        ) {
                    special_fim_pad_id = t.second;
                    if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
                        LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
                                __func__, t.second, t.first.c_str());
                        id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
                    }
                }
            }

            // find FIM_REP token: "<|fim_repo|>", "<fim-repo>", "<REP>", etc.
            if (special_fim_rep_id == LLAMA_TOKEN_NULL) {
                if (false
                        || t.first == "<|fim_repo|>"  // Qwen
                        || t.first == "<|repo_name|>"
                        || t.first == "<fim-repo>"
                        || t.first == "<REPO>"
                        ) {
                    special_fim_rep_id = t.second;
                    if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
                        LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
                                __func__, t.second, t.first.c_str());
                        id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
                    }
                }
            }

            // find FIM_SEP token: "<|file_sep|>"
            if (special_fim_sep_id == LLAMA_TOKEN_NULL) {
                if (false
                        || t.first == "<|file_sep|>" // Qwen
                        ) {
                    special_fim_sep_id = t.second;
                    if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
                        LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
                                __func__, t.second, t.first.c_str());
                        id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
                    }
                }
            }
        }

        // maintain a list of tokens that cause end-of-generation
        // this is currently determined based on the token text, which is obviously not ideal
        // ref: https://github.com/ggerganov/llama.cpp/issues/9606
        special_eog_ids.clear();

        if (special_fim_pad_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_fim_pad_id) == 0) {
            special_eog_ids.insert(special_fim_pad_id);
        }

        if (special_fim_rep_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_fim_rep_id) == 0) {
            special_eog_ids.insert(special_fim_rep_id);
        }

        if (special_fim_sep_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_fim_sep_id) == 0) {
            special_eog_ids.insert(special_fim_sep_id);
        }

        for (const auto & t : token_to_id) {
            if (false
                    || t.first == "<|eot_id|>"
                    || t.first == "<|im_end|>"
                    || t.first == "<|end|>"
                    || t.first == "<end_of_turn>"
                    || t.first == "<|endoftext|>"
                    || t.first == "<|eom_id|>"
                    || t.first == "<EOT>"
               ) {
                special_eog_ids.insert(t.second);
                if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
                    LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
                            __func__, t.second, t.first.c_str());
                    id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
                }
            } else {
                // token is control, but not marked as EOG -> print a debug log
                if (id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL && special_eog_ids.count(t.second) == 0) {
                    LLAMA_LOG_DEBUG("%s: control token: %6d '%s' is not marked as EOG\n",
                            __func__, t.second, t.first.c_str());
                }
            }
        }

        // sanity checks
        if (special_eos_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_eos_id) == 0) {
            special_eog_ids.insert(special_eos_id);
            LLAMA_LOG_WARN("%s: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__);
        }

        if (special_eot_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_eot_id) == 0) {
            special_eog_ids.insert(special_eot_id);
            LLAMA_LOG_WARN("%s: special_eot_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__);
        }

        if (special_eom_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_eom_id) == 0) {
            special_eog_ids.insert(special_eom_id);
            LLAMA_LOG_WARN("%s: special_eom_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__);
        }
    }

    // build special tokens cache
    {
        for (llama_token id = 0; id < (llama_token) n_tokens; ++id) {
            if (id_to_token[id].attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_USER_DEFINED | LLAMA_TOKEN_ATTR_UNKNOWN)) {
                cache_special_tokens.push_back(id);
            }
        }

        std::sort(cache_special_tokens.begin(), cache_special_tokens.end(),
            [&] (const llama_token a, const llama_token b) {
                return id_to_token[a].text.size() > id_to_token[b].text.size();
            }
        );

        LLAMA_LOG_INFO("%s: special tokens cache size = %u\n", __func__, (uint32_t) cache_special_tokens.size());
    }

    // build token to piece cache
    {
        size_t size_cache = 0;

        std::vector<std::string> cache(n_tokens);

        for (uint32_t id = 0; id < n_tokens; ++id) {
            cache[id] = token_to_piece_for_cache(id, true);

            size_cache += cache[id].size();
        }

        std::swap(cache_token_to_piece, cache);

        LLAMA_LOG_INFO("%s: token to piece cache size = %.4f MB\n", __func__, size_cache / 1024.0 / 1024.0);
    }

    // Handle per token attributes
    //NOTE: Each model customizes per token attributes.
    //NOTE: Per token attributes are missing from the GGUF file.
    //TODO: Extract attributes from GGUF file.
    {
        auto _contains_any = [] (const std::string & str, const std::vector<std::string> & substrs) -> bool {
            for (const auto & substr : substrs) {
                if (str.find(substr) < std::string::npos) {
                    return true;
                }
            }
            return false;
        };

        auto _set_tokenid_attr = [&] (const llama_token id, llama_token_attr attr, bool value) {
            uint32_t current = id_to_token.at(id).attr;
            current = value ? (current | attr) : (current & ~attr);
            id_to_token[id].attr = (llama_token_attr) current;
        };

        auto _set_token_attr = [&] (const std::string & token, llama_token_attr attr, bool value) {
            _set_tokenid_attr(token_to_id.at(token), attr, value);
        };

        std::string model_name;
        std::string tokenizer_pre;

        ml.get_key(LLM_KV_GENERAL_NAME,  model_name,    false);
        ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);

        // model name to lowercase
        std::transform(model_name.begin(), model_name.end(), model_name.begin(),
            [] (const std::string::value_type x) {
                return std::tolower(x);
            }
        );

        // set attributes by model/tokenizer name
        if (_contains_any(tokenizer_pre, {"jina-v2-de", "jina-v2-es", "jina-v2-code"})) {
            _set_token_attr("<mask>", LLAMA_TOKEN_ATTR_LSTRIP, true);
        } else if (_contains_any(model_name, {"phi-3", "phi3"})) {
            for (auto id : cache_special_tokens) {
                _set_tokenid_attr(id, LLAMA_TOKEN_ATTR_RSTRIP, true);
            }
            for (const auto * token : {"</s>"}) {
                _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, true);
            }
            for (const auto * token : {"<unk>", "<s>", "<|endoftext|>"}) {
                _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, false);
            }
        }
    }
}

enum llama_vocab_type llama_vocab::impl::get_type() const {
    return type;
}

std::string llama_vocab::impl::type_name() const{
    switch (type) {
        case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
        case LLAMA_VOCAB_TYPE_SPM:  return "SPM";
        case LLAMA_VOCAB_TYPE_BPE:  return "BPE";
        case LLAMA_VOCAB_TYPE_WPM:  return "WPM";
        case LLAMA_VOCAB_TYPE_UGM:  return "UGM";
        case LLAMA_VOCAB_TYPE_RWKV: return "RWKV";
        default:                    return "unknown";
    }
}

bool llama_vocab::impl::is_normal(llama_token id) const {
    GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
    return id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL;
}

bool llama_vocab::impl::is_unknown(llama_token id) const {
    GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
    return id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNKNOWN;
}

bool llama_vocab::impl::is_control(llama_token id) const {
    GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
    return id_to_token[id].attr & LLAMA_TOKEN_ATTR_CONTROL;
}

bool llama_vocab::impl::is_byte(llama_token id) const {
    GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
    return id_to_token[id].attr & LLAMA_TOKEN_ATTR_BYTE;
}

bool llama_vocab::impl::is_user_defined(llama_token id) const {
    GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
    return id_to_token[id].attr & LLAMA_TOKEN_ATTR_USER_DEFINED;
}

bool llama_vocab::impl::is_unused(llama_token id) const {
    GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
    return id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNUSED;
}

bool llama_vocab::impl::is_eog(llama_token id) const {
    return id != LLAMA_TOKEN_NULL && special_eog_ids.count(id) > 0;
}

uint8_t llama_vocab::impl::token_to_byte(llama_token id) const {
    GGML_ASSERT(get_type() != LLAMA_VOCAB_TYPE_NONE);
    GGML_ASSERT(is_byte(id));
    const auto & token_data = id_to_token.at(id);
    switch (get_type()) {
        case LLAMA_VOCAB_TYPE_SPM:
        case LLAMA_VOCAB_TYPE_UGM: {
            auto buf = token_data.text.substr(3, 2);
            return strtol(buf.c_str(), NULL, 16);
        }
        case LLAMA_VOCAB_TYPE_BPE: {
            GGML_ABORT("fatal error");
        }
        case LLAMA_VOCAB_TYPE_WPM: {
            GGML_ABORT("fatal error");
        }
        default:
            GGML_ABORT("fatal error");
    }
}

llama_token_attr llama_vocab::impl::token_get_attr(llama_token id) const {
    GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
    return id_to_token.at(id).attr;
}

void llama_vocab::impl::init_tokenizer(enum llama_vocab_type type) {
    LLAMA_LOG_DEBUG("%s: initializing tokenizer for type %d\n", __func__, type);

    switch (type) {
        case LLAMA_VOCAB_TYPE_SPM:
            tokenizer = std::make_unique<llm_tokenizer_spm>(vocab);
            break;
        case LLAMA_VOCAB_TYPE_BPE:
            tokenizer = std::make_unique<llm_tokenizer_bpe>(vocab);
            break;
        case LLAMA_VOCAB_TYPE_WPM:
            tokenizer = std::make_unique<llm_tokenizer_wpm>(vocab);
            break;
        case LLAMA_VOCAB_TYPE_UGM:
            tokenizer = std::make_unique<llm_tokenizer_ugm>(vocab, precompiled_charsmap);
            break;
        case LLAMA_VOCAB_TYPE_RWKV:
            tokenizer = std::make_unique<llm_tokenizer_rwkv>(vocab);
            break;
        default:
            GGML_ABORT("unsupported vocab type");
    }
}

//
// (de-) tokenize
//

// #define PRETOKENIZERDEBUG

void llama_vocab::impl::tokenizer_st_partition(std::forward_list<fragment_buffer_variant> & buffer, bool parse_special) const {
    // for each special token
    for (const llama_token special_id : cache_special_tokens) {
        const auto & data = vocab.get_token_data(special_id);
        const auto & text = data.text;

        if (!parse_special && (data.attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_UNKNOWN))) {
            // Ignore control and unknown tokens when parse_special == false
            continue;
            // User-defined tokens are still pre-tokenized before everything else
            // ref: https://github.com/huggingface/tokenizers/blob/fdd26ba9a3f0c133427aab0423888cbde91362d7/tokenizers/src/tokenizer/mod.rs#L726
            // This is mostly relevant for neox-style tokenizers (mpt, olmo, stablelm, etc.)
        }

        // for each text fragment
        std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
        while (it != buffer.end()) {
            auto & fragment = (*it);

            // if a fragment is text ( not yet processed )
            if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
                const auto & raw_text = fragment.raw_text;

                auto raw_text_base_offset = fragment.offset;
                auto raw_text_base_length = fragment.length;

                // loop over the text
                while (true) {
                    // find the first occurrence of a given special token in this fragment
                    //  passing offset argument only limit the "search area" but match coordinates
                    //  are still relative to the source full raw_text
                    auto match = raw_text.find(text, raw_text_base_offset);

                    // no occurrences found, stop processing this fragment for a given special token
                    if (match == std::string::npos) break;

                    // check if match is within bounds of offset <-> length
                    if (match + text.length() > raw_text_base_offset + raw_text_base_length) break;

#ifdef PRETOKENIZERDEBUG
                    LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
#endif
                    auto source = std::distance(buffer.begin(), it);

                    // if match is further than base offset
                    //  then we have some text to the left of it
                    if (match > raw_text_base_offset) {
                        // left
                        const int64_t left_reminder_offset = raw_text_base_offset + 0;
                        int64_t left_reminder_length = match - raw_text_base_offset;

                        if (data.attr & LLAMA_TOKEN_ATTR_LSTRIP) {
                            while (left_reminder_length > 0 && isspace(raw_text[left_reminder_offset + left_reminder_length - 1])) {
                                left_reminder_length--;
                            }
                        }

                        if (left_reminder_length > 0) {
                            buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length);
                            it++;
                        }

#ifdef PRETOKENIZERDEBUG
                        LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
#endif
                    }

                    // special token
                    buffer.emplace_after(it, special_id);
                    it++;

                    // right
                    if (match + text.length() < raw_text_base_offset + raw_text_base_length) {
                        int64_t right_reminder_offset = match + text.length();
                        int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + text.length());

                        if (data.attr & LLAMA_TOKEN_ATTR_RSTRIP) {
                            while (right_reminder_length > 0 && isspace(raw_text[right_reminder_offset])) {
                                right_reminder_offset++;
                                right_reminder_length--;
                            }
                        }

                        if (right_reminder_length > 0) {
                            buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length);
                            it++;
                        }

#ifdef PRETOKENIZERDEBUG
                        LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
#endif

                        if (source == 0) {
                            buffer.erase_after(buffer.before_begin());
                        } else {
                            buffer.erase_after(std::next(buffer.begin(), (source - 1)));
                        }

                        // repeat for the right side
                        raw_text_base_offset = right_reminder_offset;
                        raw_text_base_length = right_reminder_length;

#ifdef PRETOKENIZERDEBUG
                        LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
#endif
                    } else {
                        if (source == 0) {
                            buffer.erase_after(buffer.before_begin());
                        } else {
                            buffer.erase_after(std::next(buffer.begin(), (source - 1)));
                        }
                        break;
                    }
                }
            }
            it++;
        }
    }
}

// NOTE: avoid ever using this except for building the token_to_piece caches
std::string llama_vocab::impl::token_to_piece_for_cache(llama_token token, bool special) const {
    std::string piece;
    piece.resize(piece.capacity());  // using string internal cache
    const int n_chars = vocab.token_to_piece(token, &piece[0], piece.size(), 0, special);
    if (n_chars < 0) {
        piece.resize(-n_chars);
        int check = vocab.token_to_piece(token, &piece[0], piece.size(), 0, special);
        GGML_ASSERT(check == -n_chars);
    }
    else {
        piece.resize(n_chars);
    }

    return piece;
}

static void llama_escape_whitespace(std::string & text) {
    replace_all(text, " ", "\xe2\x96\x81");
}

static void llama_unescape_whitespace(std::string & word) {
    replace_all(word, "\xe2\x96\x81", " ");
}

static std::string llama_decode_text(const std::string & text) {
    std::string decoded_text;

    const auto cpts = unicode_cpts_from_utf8(text);
    for (const auto cpt : cpts) {
        const auto utf8 = unicode_cpt_to_utf8(cpt);
        try {
            decoded_text += unicode_utf8_to_byte(utf8);
        } catch (const std::out_of_range & /*e*/) {
            decoded_text += "[UNK_BYTE_0x";
            for (const auto c : utf8) {
                decoded_text += format("%02x", (uint8_t) c);
            }
            decoded_text += text + "]";
        }
    }

    return decoded_text;
}

std::vector<llama_token> llama_vocab::impl::tokenize(
        const std::string & raw_text,
        bool add_special,
        bool parse_special) const {
    GGML_ASSERT(tokenizer && "Tokenizer not initialized. Call llama_vocab::init_tokenizer() first.");

    std::vector<llama_token> output;
    std::forward_list<fragment_buffer_variant> fragment_buffer;

    if (!raw_text.empty()) {
        fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
        tokenizer_st_partition(fragment_buffer, parse_special);
    }

    switch (get_type()) {
        case LLAMA_VOCAB_TYPE_SPM:
            {
                // OG tokenizer behavior:
                //
                // tokenizer.encode('', add_special_tokens=True)  returns [1]
                // tokenizer.encode('', add_special_tokens=False) returns []

                bool is_prev_special = true;  // prefix with space if first token

                if (add_special && add_bos) {
                    GGML_ASSERT(special_bos_id != LLAMA_TOKEN_NULL);
                    output.push_back(special_bos_id);
                    is_prev_special = true;
                }

                for (const auto & fragment : fragment_buffer) {
                    if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
                        std::string text;

                        // prefix with space if previous is special
                        if (add_space_prefix && is_prev_special) {
                            text = ' ';
                        }

                        text += fragment.raw_text.substr(fragment.offset, fragment.length);

#ifdef PRETOKENIZERDEBUG
                        LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str());
#endif
                        llama_escape_whitespace(text);
                        llm_tokenizer_spm_session session(vocab);
                        session.tokenize(text, output);
                        is_prev_special = false;
                    } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
                        output.push_back(fragment.token);
                        is_prev_special = true;
                    }
                }

                if (add_special && add_bos && output.size() >= 2 && output[1] == special_bos_id) {
                    LLAMA_LOG_WARN(
                        "%s: Added a BOS token to the prompt as specified by the model but the prompt "
                        "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
                        "Are you sure this is what you want?\n", __FUNCTION__);
                }

                if (add_special && add_eos) {
                    GGML_ASSERT(special_eos_id != LLAMA_TOKEN_NULL);
                    output.push_back(special_eos_id);
                }
            } break;
        case LLAMA_VOCAB_TYPE_BPE:
            {
                llm_tokenizer_bpe_session session(vocab, *static_cast<const llm_tokenizer_bpe *>(tokenizer.get()));
                // it calls some other methods that are not exist in llm_tokenizer,
                // here just cast it to bpe tokenizer object
                if (add_special) {
                    session.append_bos(output);
                }
                for (const auto & fragment : fragment_buffer) {
                    if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
                        std::string text = fragment.raw_text.substr(fragment.offset, fragment.length);

#ifdef PRETOKENIZERDEBUG
                        LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str());
#endif
                        session.tokenize(text, output);
                    } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
                        session.append(fragment.token, output);
                    }
                }

                if (add_special) {
                    session.append_eos(output);
                    session.check_double_bos_eos(output);
                }
            } break;
        case LLAMA_VOCAB_TYPE_WPM:
            {
                if (add_special) {
                    GGML_ASSERT(special_bos_id != LLAMA_TOKEN_NULL);
                    output.push_back(special_bos_id);
                }

                llm_tokenizer_wpm_session session(vocab);

                for (const auto & fragment : fragment_buffer) {
                    if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
                        std::string text = fragment.raw_text.substr(fragment.offset, fragment.length);

#ifdef PRETOKENIZERDEBUG
                        LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str());
#endif
                        session.tokenize(text, output);
                    } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
                        output.push_back(fragment.token);
                    }
                }

                if (add_special) {
                    GGML_ASSERT(special_sep_id != LLAMA_TOKEN_NULL);
                    output.push_back(special_sep_id);
                }
            } break;
        case LLAMA_VOCAB_TYPE_UGM:
            {
                if (add_special && add_bos) {
                    GGML_ASSERT(special_bos_id != LLAMA_TOKEN_NULL);
                    output.push_back(special_bos_id);
                }
                llm_tokenizer_ugm_session session(vocab, *static_cast<const llm_tokenizer_ugm *>(tokenizer.get()));

                for (const auto & fragment : fragment_buffer) {
                    if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
                        std::string text = fragment.raw_text.substr(fragment.offset, fragment.length);
#ifdef PRETOKENIZERDEBUG
                        LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str());
#endif
                        session.tokenize(text, output);
                    } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
                        output.push_back(fragment.token);
                    }
                }

                if (add_special && add_bos && output.size() >= 2 && output[1] == special_bos_id) {
                    LLAMA_LOG_WARN(
                        "%s: Added a BOS token to the prompt as specified by the model but the prompt "
                        "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
                        "Are you sure this is what you want?\n", __FUNCTION__);
                }

                if (add_special && add_eos) {
                    GGML_ASSERT(special_eos_id != LLAMA_TOKEN_NULL);
                    output.push_back(special_eos_id);
                }
            } break;
        case LLAMA_VOCAB_TYPE_RWKV:
            {
                llm_tokenizer_rwkv_session session(vocab, *static_cast<const llm_tokenizer_rwkv *>(tokenizer.get()));
                for (const auto & fragment : fragment_buffer) {
                    if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
                        std::string text = fragment.raw_text.substr(fragment.offset, fragment.length);

#ifdef PRETOKENIZERDEBUG
                        LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str());
#endif

                        session.tokenize(text, output);
                    } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
                        output.push_back(fragment.token);
                    }
                }
            } break;
        case LLAMA_VOCAB_TYPE_NONE:
            GGML_ABORT("fatal error");
    }

    return output;
}

int32_t llama_vocab::impl::token_to_piece(llama_token token, char * buf, int32_t length, int32_t lstrip, bool special) const {
    // ref: https://github.com/ggerganov/llama.cpp/pull/7587#discussion_r1620983843
    static const int attr_special = LLAMA_TOKEN_ATTR_UNKNOWN | LLAMA_TOKEN_ATTR_CONTROL;
    const llama_token_attr attr = token_get_attr(token);
    if (!special && (attr & attr_special)) {
        return 0;
    }

    // copy piece chars to output text buffer
    // skip up to 'lstrip' leading spaces before copying
    auto _try_copy = [=] (const char * token, size_t size) -> int32_t {
        for (int32_t i = 0; i < lstrip && size && *token == ' '; ++i) {
            token++;
            size--;
        }
        if (length < (int32_t)size) {
            return -(int32_t) size;
        }
        memcpy(buf, token, size);
        return (int32_t) size;
    };

    // if we have a cache - use it
    {
        const auto & cache = cache_token_to_piece;

        if (!cache.empty()) {
            const auto & result = cache.at(token);
            return _try_copy(result.data(), result.size());
        }
    }

    if (0 <= token && token < (int32_t) id_to_token.size()) {
        const std::string & token_text = id_to_token[token].text;
        switch (get_type()) {
            case LLAMA_VOCAB_TYPE_WPM:
            case LLAMA_VOCAB_TYPE_SPM:
            case LLAMA_VOCAB_TYPE_UGM: {
                // NOTE: we accept all unsupported token types,
                // suppressing them like CONTROL tokens.
                if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
                    return _try_copy(token_text.data(), token_text.size());
                }
                if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
                    std::string result = token_text;
                    llama_unescape_whitespace(result);
                    return _try_copy(result.data(), result.size());
                }
                if (attr & LLAMA_TOKEN_ATTR_BYTE) {
                    char byte = (char) token_to_byte(token);
                    return _try_copy((char*) &byte, 1);
                }
                break;
            }
            case LLAMA_VOCAB_TYPE_BPE: {
                // NOTE: we accept all unsupported token types,
                // suppressing them like CONTROL tokens.
                if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
                    return _try_copy(token_text.data(), token_text.size());
                }
                if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
                    std::string result = llama_decode_text(token_text);
                    return _try_copy(result.data(), result.size());
                }
                break;
            }
            case LLAMA_VOCAB_TYPE_RWKV: {
                std::vector<uint8_t> result = llama_unescape_rwkv_token(token_text);

                // If we don't have enough space, return an error
                if (result.size() > (size_t)length) {
                    return -(int)result.size();
                }

                memcpy(buf, result.data(), result.size());
                return (int)result.size();
            }
            default:
                GGML_ABORT("fatal error");
        }
    }

    return 0;
}

const std::string & llama_vocab::impl::token_to_piece(llama_token token) const {
    return cache_token_to_piece.at(token);
}

int32_t llama_vocab::impl::detokenize(
               const llama_token * tokens,
                         int32_t   n_tokens,
                            char * text,
                         int32_t   text_len_max,
                            bool   remove_special,
                            bool   unparse_special) const {
    if (type == LLAMA_VOCAB_TYPE_NONE) {
        return 0;
    }

    GGML_ASSERT(tokenizer && "Tokenizer not initialized. Call llama_vocab::init_tokenizer() first.");

    int32_t avail = text_len_max;
    int32_t total = 0;

    // remove the leading space
    bool remove_space = add_space_prefix;

    if (remove_special && add_bos) {
        if (n_tokens > 0 && tokens[0] == special_bos_id) {
            remove_space = false;
            n_tokens--;
            tokens++;
        }
    }

    if (remove_special && add_eos) {
        if (n_tokens > 0 && tokens[n_tokens - 1] == special_eos_id) {
            n_tokens--;
        }
    }

    for (int32_t i = 0; i < n_tokens; ++i) {
        GGML_ASSERT(avail >= 0);
        int32_t n_chars = token_to_piece(tokens[i], text, avail, remove_space, unparse_special);
        remove_space = false;
        if (n_chars < 0) {
            avail = 0;
            total -= n_chars;
        } else if (n_chars > 0) {
            avail -= n_chars;
            text  += n_chars;
            total += n_chars;
        }
    }

    if (total > text_len_max) {
        return -total;
    }

    if (clean_spaces) {
        text -= total;  // restart text

        // first pass: characters ?!.,  //TODO: where do these characters come from?
        const int32_t total1 = total;
        total = total ? 1 : 0;
        for (int32_t i = 1; i < total1; ++i) {
            const char x = text[i];
            if (text[i - 1] == ' ') {
                if (x == '?' || x == '!' || x == '.' || x == ',') {  // " ?", " !", " .", " ,"
                    total--;  // remove space
                }
            }
            text[total++] = x;
        }

        // second pass: strip single apostrophe between spaces
        const int32_t total2 = total;
        total = total ? 1 : 0;
        for (int32_t i = 1; i < total2; ++i) {
            const char x = text[i];
            if (x == '\'' && i + 1 < total2 && text[i - 1] == ' ' && text[i + 1] == ' ') {  // " ' "
                total--;           // remove prev space
                text[++i] = '\0';  // remove next space
            }
            text[total++] = x;
        }

        // third pass: apostrophe contractions  //NOTE: this makes sense?
        const int32_t total3 = total;
        total = total ? 1 : 0;
        for (int32_t i = 1; i < total3; ++i) {
            const char x = text[i];
            if (text[i - 1] == ' ') {
                if (x == '\'' && i + 1 < total3) {
                    const char x1 = text[i + 1];
                    if (x1 == 't' || x1 == 'd') {  // " 't", " 'd"
                        //total--;  // remove space
                    } else if (x1 == 's' || x1 == 'm') {  // " 's", " 'm"
                        total--;  // remove space
                    } else if (i + 2 < total3) {
                        const char x2 = text[i + 2];
                        if ((x1 == 'l' && x2 == 'l')) {  // " 'll"
                            //total--;  // remove space
                        } else if ((x1 == 'r' && x2 == 'e') || (x1 == 'v' && x2 == 'e')) {  // " 're", " 've"
                            total--;  // remove space
                        } else {
                            //total--;  // remove space
                        }
                    } else {
                        //total--;  // remove space
                    }
                }
            }
            text[total++] = x;
        }
    }

    return total <= text_len_max ? total : -total;
}

void llama_vocab::impl::print_info() const {
    LLAMA_LOG_INFO("%s: vocab type       = %s\n",     __func__, type_name().c_str());
    LLAMA_LOG_INFO("%s: n_vocab          = %u\n",     __func__, vocab.n_tokens());
    LLAMA_LOG_INFO("%s: n_merges         = %u\n",     __func__, (uint32_t) bpe_ranks.size());

    // special tokens
    if (special_bos_id  != LLAMA_TOKEN_NULL)    { LLAMA_LOG_INFO( "%s: BOS token        = %d '%s'\n", __func__, special_bos_id,     id_to_token[special_bos_id].text.c_str() );  }
    if (special_eos_id  != LLAMA_TOKEN_NULL)    { LLAMA_LOG_INFO( "%s: EOS token        = %d '%s'\n", __func__, special_eos_id,     id_to_token[special_eos_id].text.c_str() );  }
    if (special_eot_id  != LLAMA_TOKEN_NULL)    { LLAMA_LOG_INFO( "%s: EOT token        = %d '%s'\n", __func__, special_eot_id,     id_to_token[special_eot_id].text.c_str() );  }
    if (special_eom_id  != LLAMA_TOKEN_NULL)    { LLAMA_LOG_INFO( "%s: EOM token        = %d '%s'\n", __func__, special_eom_id,     id_to_token[special_eom_id].text.c_str() );  }
    if (special_unk_id  != LLAMA_TOKEN_NULL)    { LLAMA_LOG_INFO( "%s: UNK token        = %d '%s'\n", __func__, special_unk_id,     id_to_token[special_unk_id].text.c_str() );  }
    if (special_sep_id  != LLAMA_TOKEN_NULL)    { LLAMA_LOG_INFO( "%s: SEP token        = %d '%s'\n", __func__, special_sep_id,     id_to_token[special_sep_id].text.c_str() );  }
    if (special_pad_id  != LLAMA_TOKEN_NULL)    { LLAMA_LOG_INFO( "%s: PAD token        = %d '%s'\n", __func__, special_pad_id,     id_to_token[special_pad_id].text.c_str() );  }
    if (special_mask_id != LLAMA_TOKEN_NULL)    { LLAMA_LOG_INFO( "%s: MASK token       = %d '%s'\n", __func__, special_mask_id,    id_to_token[special_mask_id].text.c_str() ); }

    if (linefeed_id != LLAMA_TOKEN_NULL)        { LLAMA_LOG_INFO( "%s: LF token         = %d '%s'\n", __func__, linefeed_id,        id_to_token[linefeed_id].text.c_str() ); }

    if (special_fim_pre_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM PRE token    = %d '%s'\n", __func__, special_fim_pre_id, id_to_token[special_fim_pre_id].text.c_str() ); }
    if (special_fim_suf_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM SUF token    = %d '%s'\n", __func__, special_fim_suf_id, id_to_token[special_fim_suf_id].text.c_str() ); }
    if (special_fim_mid_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM MID token    = %d '%s'\n", __func__, special_fim_mid_id, id_to_token[special_fim_mid_id].text.c_str() ); }
    if (special_fim_pad_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM PAD token    = %d '%s'\n", __func__, special_fim_pad_id, id_to_token[special_fim_pad_id].text.c_str() ); }
    if (special_fim_rep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM REP token    = %d '%s'\n", __func__, special_fim_rep_id, id_to_token[special_fim_rep_id].text.c_str() ); }
    if (special_fim_sep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM SEP token    = %d '%s'\n", __func__, special_fim_sep_id, id_to_token[special_fim_sep_id].text.c_str() ); }

    for (const auto & id : special_eog_ids) {
        LLAMA_LOG_INFO( "%s: EOG token        = %d '%s'\n", __func__, id, id_to_token[id].text.c_str() );
    }

    LLAMA_LOG_INFO("%s: max token length = %d\n", __func__, max_token_len);
}

llama_vocab::llama_vocab() : pimpl(new impl(*this)) {
}

llama_vocab::~llama_vocab() {
}

void llama_vocab::load(llama_model_loader & ml, const LLM_KV & kv) {
    pimpl->load(ml, kv);
}

enum llama_vocab_type llama_vocab::get_type() const {
    return pimpl->type;
}

enum llama_vocab_pre_type llama_vocab::get_pre_type() const {
    return pimpl->pre_type;
}

uint32_t llama_vocab::n_tokens() const {
    return (uint32_t) pimpl->id_to_token.size();
}

uint32_t llama_vocab::n_token_types() const {
    return (uint32_t) pimpl->n_token_types;
}

std::string llama_vocab::type_name() const{
    return pimpl->type_name();
}

bool llama_vocab::is_normal(llama_token id) const {
    return pimpl->is_normal(id);
}

bool llama_vocab::is_unknown(llama_token id) const {
    return pimpl->is_unknown(id);
}

bool llama_vocab::is_control(llama_token id) const {
    return pimpl->is_control(id);
}

bool llama_vocab::is_byte(llama_token id) const {
    return pimpl->is_byte(id);
}

bool llama_vocab::is_user_defined(llama_token id) const {
    return pimpl->is_user_defined(id);
}

bool llama_vocab::is_unused(llama_token id) const {
    return pimpl->is_unused(id);
}

bool llama_vocab::is_eog(llama_token id) const {
    return pimpl->is_eog(id);
}

uint8_t llama_vocab::token_to_byte(llama_token id) const {
    return pimpl->token_to_byte(id);
}

llama_token llama_vocab::byte_to_token(uint8_t ch) const {
    GGML_ASSERT(get_type() != LLAMA_VOCAB_TYPE_NONE);
    static const char * hex = "0123456789ABCDEF";
    switch (get_type()) {
        case LLAMA_VOCAB_TYPE_SPM:
        case LLAMA_VOCAB_TYPE_UGM: {
            const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
            auto token = pimpl->token_to_id.find(buf);
            if (token != pimpl->token_to_id.end()) {
                return (*token).second;
            }
            // Try to fall back to just the byte as a string
            const char buf2[2] = { (char)ch, 0 };
            return pimpl->token_to_id.at(buf2);
        }
        case LLAMA_VOCAB_TYPE_WPM:
        case LLAMA_VOCAB_TYPE_BPE: {
            return pimpl->token_to_id.at(unicode_byte_to_utf8(ch));
        }
        default:
            GGML_ABORT("fatal error");
    }
}

llama_token llama_vocab::text_to_token(const std::string & text) const {
    GGML_ASSERT(pimpl->type != LLAMA_VOCAB_TYPE_NONE);
    auto it = pimpl->token_to_id.find(text);
    if (it != pimpl->token_to_id.end()) {
        return (*it).second;
    }
    return LLAMA_TOKEN_NULL;
}

const llama_vocab::token_data & llama_vocab::get_token_data(llama_token id) const {
    GGML_ASSERT(pimpl->type != LLAMA_VOCAB_TYPE_NONE);
    return pimpl->id_to_token.at(id);
}

const char * llama_vocab::token_get_text(llama_token id) const {
    GGML_ASSERT(pimpl->type != LLAMA_VOCAB_TYPE_NONE);
    return pimpl->id_to_token.at(id).text.c_str();
}

float llama_vocab::token_get_score(llama_token id) const {
    GGML_ASSERT(pimpl->type != LLAMA_VOCAB_TYPE_NONE);
    return pimpl->id_to_token.at(id).score;
}

llama_token_attr llama_vocab::token_get_attr(llama_token id) const {
    return pimpl->token_get_attr(id);
}

llama_token llama_vocab::token_bos() const {
    return pimpl->special_bos_id;
}

llama_token llama_vocab::token_eos() const {
    return pimpl->special_eos_id;
}

llama_token llama_vocab::token_eot() const {
    return pimpl->special_eot_id;
}

llama_token llama_vocab::token_eom() const {
    return pimpl->special_eom_id;
}

llama_token llama_vocab::token_unk() const {
    return pimpl->special_unk_id;
}

llama_token llama_vocab::token_sep() const {
    return pimpl->special_sep_id;
}

llama_token llama_vocab::token_nl() const {
    return pimpl->linefeed_id;
}

llama_token llama_vocab::token_pad() const {
    return pimpl->special_pad_id;
}

llama_token llama_vocab::token_prefix() const {
    return pimpl->special_fim_pre_id;
}

llama_token llama_vocab::token_middle() const {
    return pimpl->special_fim_mid_id;
}

llama_token llama_vocab::token_suffix() const {
    return pimpl->special_fim_suf_id;
}

llama_token llama_vocab::token_fim_pre() const {
    return pimpl->special_fim_pre_id;
}

llama_token llama_vocab::token_fim_suf() const {
    return pimpl->special_fim_suf_id;
}

llama_token llama_vocab::token_fim_mid() const {
    return pimpl->special_fim_mid_id;
}

llama_token llama_vocab::token_fim_pad() const {
    return pimpl->special_fim_pad_id;
}

llama_token llama_vocab::token_fim_rep() const {
    return pimpl->special_fim_rep_id;
}

llama_token llama_vocab::token_fim_sep() const {
    return pimpl->special_fim_sep_id;
}

bool llama_vocab::get_add_space_prefix() const {
    return pimpl->add_space_prefix;
}

bool llama_vocab::get_add_bos() const {
    return pimpl->add_bos;
}

bool llama_vocab::get_add_eos() const {
    return pimpl->add_eos;
}

bool llama_vocab::get_ignore_merges() const {
    return pimpl->ignore_merges;
}

bool llama_vocab::get_clean_spaces() const {
    return pimpl->clean_spaces;
}

bool llama_vocab::get_remove_extra_whitespaces() const {
    return pimpl->remove_extra_whitespaces;
}

bool llama_vocab::get_escape_whitespaces() const {
    return pimpl->escape_whitespaces;
}

bool llama_vocab::get_treat_whitespace_as_suffix() const {
    return pimpl->treat_whitespace_as_suffix;
}

int llama_vocab::max_token_len() const {
    return pimpl->max_token_len;
}

int llama_vocab::find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
    GGML_ASSERT(token_left.find(' ')   == std::string::npos);
    GGML_ASSERT(token_left.find('\n')  == std::string::npos);
    GGML_ASSERT(token_right.find(' ')  == std::string::npos);
    GGML_ASSERT(token_right.find('\n') == std::string::npos);

    auto it = pimpl->bpe_ranks.find(std::make_pair(token_left, token_right));
    if (it == pimpl->bpe_ranks.end()) {
        return -1;
    }

    return it->second;
}

int32_t llama_vocab::tokenize(
                  const char * text,
                     int32_t   text_len,
                 llama_token * tokens,
                     int32_t   n_tokens_max,
                        bool   add_special,
                        bool   parse_special) const {
    auto res = tokenize(std::string(text, text_len), add_special, parse_special);
    if (n_tokens_max < (int) res.size()) {
        // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
        return -((int) res.size());
    }

    for (size_t i = 0; i < res.size(); i++) {
        tokens[i] = res[i];
    }

    return res.size();
}

std::vector<llama_token> llama_vocab::tokenize(
        const std::string & raw_text,
        bool add_special,
        bool parse_special) const {
    return pimpl->tokenize(raw_text, add_special, parse_special);
}

const std::string & llama_vocab::token_to_piece(llama_token token) const {
    return pimpl->token_to_piece(token);
}

int32_t llama_vocab::token_to_piece(llama_token token, char * buf, int32_t length, int32_t lstrip, bool special) const {
    return pimpl->token_to_piece(token, buf, length, lstrip, special);
}

int32_t llama_vocab::detokenize(
               const llama_token * tokens,
                         int32_t   n_tokens,
                            char * text,
                         int32_t   text_len_max,
                            bool   remove_special,
                            bool   unparse_special) const {
    return pimpl->detokenize(tokens, n_tokens, text, text_len_max, remove_special, unparse_special);
}

std::string llama_vocab::detokenize(const std::vector<llama_token> & tokens, bool special) const {
    std::string text;
    text.resize(std::max(text.capacity(), tokens.size()));
    int32_t n_chars = detokenize(tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
    if (n_chars < 0) {
        text.resize(-n_chars);
        n_chars = detokenize(tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
        GGML_ASSERT(n_chars <= (int32_t)text.size());  // whitespace trimming is performed after per-token detokenization
    }

    text.resize(n_chars);

    // NOTE: the original tokenizer decodes bytes after collecting the pieces.
    return text;
}

void llama_vocab::print_info() const {
    pimpl->print_info();
}

//
// interface implementation
//

int32_t llama_vocab_n_tokens(const struct llama_vocab * vocab) {
    return vocab->n_tokens();
}

// deprecated
int32_t llama_n_vocab(const struct llama_vocab * vocab) {
    return llama_vocab_n_tokens(vocab);
}

enum llama_vocab_type llama_vocab_type(const struct llama_vocab * vocab) {
    return vocab->get_type();
}

const char * llama_vocab_get_text(const struct llama_vocab * vocab, llama_token token) {
    return vocab->token_get_text(token);
}

float llama_vocab_get_score(const struct llama_vocab * vocab, llama_token token) {
    return vocab->token_get_score(token);
}

enum llama_token_attr llama_vocab_get_attr(const struct llama_vocab * vocab, llama_token token) {
    return vocab->token_get_attr(token);
}

bool llama_vocab_is_eog(const struct llama_vocab * vocab, llama_token token) {
    return vocab->is_eog(token);
}

bool llama_vocab_is_control(const struct llama_vocab * vocab, llama_token token) {
    return vocab->is_control(token);
}

llama_token llama_vocab_bos(const struct llama_vocab * vocab) {
    return vocab->token_bos();
}

llama_token llama_vocab_eos(const struct llama_vocab * vocab) {
    return vocab->token_eos();
}

llama_token llama_vocab_eot(const struct llama_vocab * vocab) {
    return vocab->token_eot();
}

// deprecated
llama_token llama_vocab_cls(const struct llama_vocab * vocab) {
    return vocab->token_bos();
}

llama_token llama_vocab_sep(const struct llama_vocab * vocab) {
    return vocab->token_sep();
}

llama_token llama_vocab_nl (const struct llama_vocab * vocab) {
    return vocab->token_nl();
}

llama_token llama_vocab_pad(const struct llama_vocab * vocab) {
    return vocab->token_pad();
}

bool llama_vocab_get_add_bos(const struct llama_vocab * vocab) {
    return vocab->get_add_bos();
}

bool llama_vocab_get_add_eos(const struct llama_vocab * vocab) {
    return vocab->get_add_eos();
}

llama_token llama_vocab_fim_pre(const struct llama_vocab * vocab) {
    return vocab->token_fim_pre();
}

llama_token llama_vocab_fim_suf(const struct llama_vocab * vocab) {
    return vocab->token_fim_suf();
}

llama_token llama_vocab_fim_mid(const struct llama_vocab * vocab) {
    return vocab->token_fim_mid();
}

llama_token llama_vocab_fim_pad(const struct llama_vocab * vocab) {
    return vocab->token_fim_pad();
}

llama_token llama_vocab_fim_rep(const struct llama_vocab * vocab) {
    return vocab->token_fim_rep();
}

llama_token llama_vocab_fim_sep(const struct llama_vocab * vocab) {
    return vocab->token_fim_sep();
}

// deprecated
const char * llama_token_get_text(const struct llama_vocab * vocab, llama_token token) {
    return llama_vocab_get_text(vocab, token);
}

// deprecated
float llama_token_get_score(const struct llama_vocab * vocab, llama_token token) {
    return llama_vocab_get_score(vocab, token);
}

// deprecated
enum llama_token_attr llama_token_get_attr(const struct llama_vocab * vocab, llama_token token) {
    return llama_vocab_get_attr(vocab, token);
}

// deprecated
bool llama_token_is_eog(const struct llama_vocab * vocab, llama_token token) {
    return llama_vocab_is_eog(vocab, token);
}

// deprecated
bool llama_token_is_control(const struct llama_vocab * vocab, llama_token token) {
    return llama_vocab_is_control(vocab, token);
}

// deprecated
llama_token llama_token_bos(const struct llama_vocab * vocab) {
    return llama_vocab_bos(vocab);
}

// deprecated
llama_token llama_token_eos(const struct llama_vocab * vocab) {
    return llama_vocab_eos(vocab);
}

// deprecated
llama_token llama_token_eot(const struct llama_vocab * vocab) {
    return llama_vocab_eot(vocab);
}

// deprecated
llama_token llama_token_cls(const struct llama_vocab * vocab) {
    //return llama_vocab_cls(vocab);
    return llama_vocab_bos(vocab); // avoid deprecation warning
}

// deprecated
llama_token llama_token_sep(const struct llama_vocab * vocab) {
    return llama_vocab_sep(vocab);
}

// deprecated
llama_token llama_token_nl (const struct llama_vocab * vocab) {
    return llama_vocab_nl(vocab);
}

// deprecated
llama_token llama_token_pad(const struct llama_vocab * vocab) {
    return llama_vocab_pad(vocab);
}

// deprecated
bool llama_add_bos_token(const struct llama_vocab * vocab) {
    return llama_vocab_get_add_bos(vocab);
}

// deprecated
bool llama_add_eos_token(const struct llama_vocab * vocab) {
    return llama_vocab_get_add_eos(vocab);
}

// deprecated
llama_token llama_token_fim_pre(const struct llama_vocab * vocab) {
    return llama_vocab_fim_pre(vocab);
}

// deprecated
llama_token llama_token_fim_suf(const struct llama_vocab * vocab) {
    return llama_vocab_fim_suf(vocab);
}

// deprecated
llama_token llama_token_fim_mid(const struct llama_vocab * vocab) {
    return llama_vocab_fim_mid(vocab);
}

// deprecated
llama_token llama_token_fim_pad(const struct llama_vocab * vocab) {
    return llama_vocab_fim_pad(vocab);
}

// deprecated
llama_token llama_token_fim_rep(const struct llama_vocab * vocab) {
    return llama_vocab_fim_rep(vocab);
}

// deprecated
llama_token llama_token_fim_sep(const struct llama_vocab * vocab) {
    return llama_vocab_fim_sep(vocab);
}

//
// tokenization
//

int32_t llama_tokenize(
    const struct llama_vocab * vocab,
                  const char * text,
                     int32_t   text_len,
                 llama_token * tokens,
                     int32_t   n_tokens_max,
                        bool   add_special,
                        bool   parse_special) {
    return vocab->tokenize(text, text_len, tokens, n_tokens_max, add_special, parse_special);
}

int32_t llama_token_to_piece(
    const struct llama_vocab * vocab,
                 llama_token   token,
                        char * buf,
                     int32_t   length,
                     int32_t   lstrip,
                        bool   special) {
    return vocab->token_to_piece(token, buf, length, lstrip, special);
}

int32_t llama_detokenize(
    const struct llama_vocab * vocab,
           const llama_token * tokens,
                     int32_t   n_tokens,
                        char * text,
                     int32_t   text_len_max,
                        bool   remove_special,
                        bool   unparse_special) {
    return vocab->detokenize(tokens, n_tokens, text, text_len_max, remove_special, unparse_special);
}