Spaces:
Running
Running
File size: 5,780 Bytes
a1a4268 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
#pragma once
#include "llama.h"
#include "llama-impl.h"
#include "llama-arch.h"
#include "llama-mmap.h"
#include "ggml-cpp.h"
#include <cstddef>
#include <map>
#include <stdexcept>
#include <unordered_map>
using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
enum llama_fver {
GGUF_FILE_VERSION_V1 = 1,
GGUF_FILE_VERSION_V2 = 2,
GGUF_FILE_VERSION_V3 = 3,
};
const char * llama_file_version_name(llama_fver version);
struct llama_model_loader {
// Holds information on a model weight
struct llama_tensor_weight {
uint16_t idx; // source file index
size_t offs; // tensor data offset in the original file
ggml_tensor * tensor;
llama_tensor_weight(const llama_file * file, uint16_t idx, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
const int tensor_idx = gguf_find_tensor(gguf_ctx, ggml_get_name(tensor));
if (tensor_idx < 0) {
throw std::runtime_error(format("tensor '%s' not found in the model", ggml_get_name(tensor)));
}
offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size()) {
throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", ggml_get_name(tensor)));
}
}
};
// custom comparator to sort weights more nicely by layer
struct weight_name_comparer {
bool operator()(const std::string & a, const std::string & b) const {
int a_layer = -1;
int b_layer = -1;
sscanf(a.c_str(), "blk.%d.", &a_layer);
sscanf(b.c_str(), "blk.%d.", &b_layer);
if (a_layer != b_layer) {
return a_layer < b_layer;
}
return a < b;
}
};
static const int TENSOR_NOT_REQUIRED = 1;
static const int TENSOR_DUPLICATED = 2;
int n_kv = 0;
int n_tensors = 0;
int n_created = 0;
uint64_t n_elements = 0;
size_t n_bytes = 0;
bool use_mmap = false;
bool check_tensors;
llama_files files;
llama_ftype ftype;
llama_fver fver;
llama_mmaps mappings;
std::map<std::string, struct llama_tensor_weight, weight_name_comparer> weights_map;
std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
gguf_context_ptr meta;
std::vector<ggml_context_ptr> contexts;
std::string arch_name;
LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
size_t size_done = 0;
size_t size_data = 0;
std::vector<std::pair<size_t, size_t>> mmaps_used;
llama_model_loader(
const std::string & fname,
std::vector<std::string> & splits, // optional, only need if the split does not follow naming scheme
bool use_mmap,
bool check_tensors,
const struct llama_model_kv_override * param_overrides_p);
template<typename T>
typename std::enable_if<std::is_integral<T>::value, bool>::type
get_arr_n(const std::string & key, T & result, bool required = true);
template<typename T>
typename std::enable_if<std::is_integral<T>::value, bool>::type
get_arr_n(enum llm_kv kid, T & result, bool required = true);
template<typename T>
bool get_arr(const std::string & key, std::vector<T> & result, bool required = true);
template<typename T, size_t N_MAX>
bool get_arr(const std::string & key, std::array<T, N_MAX> & result, bool required = true);
template<typename T>
bool get_arr(enum llm_kv kid, T & result, bool required = true);
template<typename T>
bool get_key(const std::string & key, T & result, bool required = true);
template<typename T>
bool get_key(enum llm_kv kid, T & result, bool required = true);
template<typename T, size_t N_MAX>
bool get_key_or_arr(const std::string & key, std::array<T, N_MAX> & result, uint32_t n, bool required = true);
template<typename T>
bool get_key_or_arr(enum llm_kv kid, T & result, uint32_t n, bool required = true);
std::string get_arch_name() const;
enum llm_arch get_arch() const;
const llama_tensor_weight * get_weight(const char * name) const;
const llama_tensor_weight & require_weight(const char * name) const;
struct ggml_tensor * get_tensor_meta(const char * name) const;
struct ggml_tensor * require_tensor_meta(const std::string & name) const;
const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const;
struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::initializer_list<int64_t> & ne, int flags = 0);
struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::initializer_list<int64_t> & ne, size_t offset, bool required = true);
void done_getting_tensors() const;
void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr);
void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const;
// for backwards compatibility, does not support ggml-backend
void load_data_for(struct ggml_tensor * cur) const;
// Returns false if cancelled by progress_callback
bool load_all_data(
struct ggml_context * ctx,
llama_buf_map & bufs,
llama_mlocks * lmlocks,
llama_progress_callback progress_callback,
void * progress_callback_user_data);
std::string ftype_name() const;
void print_info() const;
};
|