Spaces:
No application file
No application file
push files to HuggingFace Hub
Browse files- .dockerignore +1 -0
- dockerfile +29 -0
- main.py +98 -0
- requirements.txt +51 -0
.dockerignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.venv
|
dockerfile
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use of an official Python runtime as a base image
|
2 |
+
FROM python:3.11.5
|
3 |
+
|
4 |
+
# #Set up of working directory in the container i.e /app
|
5 |
+
# WORKDIR /code
|
6 |
+
|
7 |
+
# # Copy current directory contents into the container at /app
|
8 |
+
# COPY . /app
|
9 |
+
|
10 |
+
# # Install needed packages specified in requirements.txt recursively
|
11 |
+
# RUN pip install -r requirements.txt
|
12 |
+
|
13 |
+
# # Expose the port number the app runs on
|
14 |
+
# EXPOSE 7860
|
15 |
+
|
16 |
+
# # Command to run the application
|
17 |
+
#CMD ["uvicorn", "src.main:app", "--host", "0.0.0.0", "--port", "7860"]
|
18 |
+
|
19 |
+
FROM python:3.11.5
|
20 |
+
|
21 |
+
WORKDIR /code
|
22 |
+
|
23 |
+
COPY ./requirements.txt /code/requirements.txt
|
24 |
+
|
25 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
26 |
+
|
27 |
+
COPY . .
|
28 |
+
|
29 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
main.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
import uvicorn
|
3 |
+
#from typing import List, Literal
|
4 |
+
from pydantic import BaseModel, Field
|
5 |
+
import pandas as pd
|
6 |
+
import pickle, os
|
7 |
+
|
8 |
+
#setup
|
9 |
+
# Get the directory of the current file (FastAPI application file)
|
10 |
+
DIRPATH = os.path.dirname(os.path.realpath(__file__))
|
11 |
+
|
12 |
+
# Construct the path to ml.pkl relative to the current file using forward slashes
|
13 |
+
ml_core_fp = os.path.join(DIRPATH, "../model/ml.pkl")
|
14 |
+
|
15 |
+
|
16 |
+
#useful functions
|
17 |
+
def load_ml_components(fp):
|
18 |
+
"load the ml components to re-use in app"
|
19 |
+
with open(fp, 'rb') as file:
|
20 |
+
obj = pickle.load(file)
|
21 |
+
return obj
|
22 |
+
|
23 |
+
|
24 |
+
# Loading: Execute and instantiate ml components
|
25 |
+
ml_components_dict = load_ml_components(fp = ml_core_fp)
|
26 |
+
|
27 |
+
pipeline = ml_components_dict["pipeline"]
|
28 |
+
|
29 |
+
encoder = ml_components_dict["encoder"]
|
30 |
+
|
31 |
+
|
32 |
+
# API
|
33 |
+
app = FastAPI(
|
34 |
+
title= "Sepsis classification API"
|
35 |
+
)
|
36 |
+
|
37 |
+
# Input for Modelling
|
38 |
+
class Sepsis_Pred(BaseModel):
|
39 |
+
|
40 |
+
PRG: int = Field(..., description='Plasma glucose')
|
41 |
+
PL: int = Field(..., description='Blood Work Result-1 (mu U/ml)')
|
42 |
+
PR: int = Field(..., description='Blood Pressure (mm Hg)')
|
43 |
+
SK: int = Field(..., description='Blood Work Result-2 (mm)')
|
44 |
+
TS: int = Field(..., description='Blood Work Result-3 (mu U/ml)')
|
45 |
+
M11: float = Field(..., description='Body mass index (weight in kg/(height in m)^2)')
|
46 |
+
BD2: float = Field(..., description='Blood Work Result-4 (mu U/ml)')
|
47 |
+
Age: int = Field(..., description='Patient age (years)')
|
48 |
+
Insurance: int = Field(..., description='If a patient holds a valid insurance card')
|
49 |
+
|
50 |
+
|
51 |
+
@app.get("/")
|
52 |
+
def root():
|
53 |
+
return {
|
54 |
+
"Info": "Sepsis classification API : This API classifies whether a patient will develop sepsis based on various test results"
|
55 |
+
}
|
56 |
+
|
57 |
+
|
58 |
+
@app.post("/classify_patient")
|
59 |
+
def sepsis_classification(sepsis_pred: Sepsis_Pred):
|
60 |
+
|
61 |
+
try:
|
62 |
+
|
63 |
+
#Dataframe creation
|
64 |
+
df = pd.DataFrame([sepsis_pred.model_dump()])
|
65 |
+
|
66 |
+
print(f'df: {df}')
|
67 |
+
|
68 |
+
# ML prediction
|
69 |
+
prediction = pipeline.predict(df)
|
70 |
+
|
71 |
+
# Get the index of the predicted class (0 or 1 in binary classification)
|
72 |
+
predicted_class_index = prediction[0]
|
73 |
+
|
74 |
+
confidence_score = pipeline.predict_proba(df)
|
75 |
+
|
76 |
+
# Retrieve the confidence score for the predicted class
|
77 |
+
|
78 |
+
confidence_score_predicted_class = confidence_score[0][predicted_class_index]
|
79 |
+
|
80 |
+
|
81 |
+
print(f"confidence_score: {confidence_score}")
|
82 |
+
|
83 |
+
execution_message = "Execution successful"
|
84 |
+
|
85 |
+
|
86 |
+
# encoded prediction
|
87 |
+
decoded_prediction = encoder.inverse_transform([prediction])[0]
|
88 |
+
|
89 |
+
|
90 |
+
return {"execution message": execution_message, "patient_diagnosis": decoded_prediction, "confidence_score": confidence_score_predicted_class}
|
91 |
+
|
92 |
+
|
93 |
+
except Exception as e:
|
94 |
+
raise HTTPException(status_code=500, detail=f"An error occurred during prediction {str(e)}")
|
95 |
+
|
96 |
+
|
97 |
+
if __name__ == "__main__":
|
98 |
+
uvicorn.run("main:app", reload=True)
|
requirements.txt
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
annotated-types==0.6.0
|
2 |
+
anyio==3.7.1
|
3 |
+
certifi==2023.11.17
|
4 |
+
click==8.1.7
|
5 |
+
colorama==0.4.6
|
6 |
+
contourpy==1.2.0
|
7 |
+
cycler==0.12.1
|
8 |
+
dnspython==2.4.2
|
9 |
+
email-validator==2.1.0.post1
|
10 |
+
fastapi==0.105.0
|
11 |
+
fonttools==4.46.0
|
12 |
+
h11==0.14.0
|
13 |
+
httpcore==1.0.2
|
14 |
+
httptools==0.6.1
|
15 |
+
httpx==0.25.2
|
16 |
+
idna==3.6
|
17 |
+
imbalanced-learn==0.11.0
|
18 |
+
itsdangerous==2.1.2
|
19 |
+
Jinja2==3.1.2
|
20 |
+
joblib==1.3.2
|
21 |
+
kiwisolver==1.4.5
|
22 |
+
MarkupSafe==2.1.3
|
23 |
+
matplotlib==3.8.2
|
24 |
+
numpy==1.26.2
|
25 |
+
orjson==3.9.10
|
26 |
+
packaging==23.2
|
27 |
+
pandas==2.1.4
|
28 |
+
Pillow==10.1.0
|
29 |
+
pydantic==2.5.2
|
30 |
+
pydantic-extra-types==2.2.0
|
31 |
+
pydantic-settings==2.1.0
|
32 |
+
pydantic_core==2.14.5
|
33 |
+
pyparsing==3.1.1
|
34 |
+
python-dateutil==2.8.2
|
35 |
+
python-dotenv==1.0.0
|
36 |
+
python-multipart==0.0.6
|
37 |
+
pytz==2023.3.post1
|
38 |
+
PyYAML==6.0.1
|
39 |
+
scikit-learn==1.3.2
|
40 |
+
scipy==1.11.4
|
41 |
+
seaborn==0.13.0
|
42 |
+
six==1.16.0
|
43 |
+
sniffio==1.3.0
|
44 |
+
starlette==0.27.0
|
45 |
+
threadpoolctl==3.2.0
|
46 |
+
typing_extensions==4.9.0
|
47 |
+
tzdata==2023.3
|
48 |
+
ujson==5.9.0
|
49 |
+
uvicorn==0.24.0.post1
|
50 |
+
watchfiles==0.21.0
|
51 |
+
websockets==12.0
|