from openai import OpenAI from dotenv import load_dotenv import os import threading import time import gradio as gr from lang import LANGUAGE_CONFIG # 环境变量预校验 load_dotenv(override=True) required_env_vars = ["API_KEY", "API_URL", "API_MODEL"] missing_vars = [var for var in required_env_vars if not os.getenv(var)] if missing_vars: raise EnvironmentError(f"Missing required environment variables: {', '.join(missing_vars)}") class AppConfig: DEFAULT_THROUGHPUT = 10 SYNC_THRESHOLD_DEFAULT = 0 API_TIMEOUT = 20 LOADING_DEFAULT = "✅ Ready!
Think together with AI. Use Shift+Enter to toggle generation" class DynamicState: """动态UI状态""" def __init__(self): self.should_stream = False self.stream_completed = False self.in_cot = True self.current_language = "en" def control_button_handler(self): """切换流式传输状态""" if self.should_stream: self.should_stream = False else: self.stream_completed = False self.should_stream = True return self.ui_state_controller() def ui_state_controller(self): """生成动态UI组件状态""" print("UPDATE UI!!") # [control_button, status_indicator, thought_editor, reset_button] lang_data = LANGUAGE_CONFIG[self.current_language] control_value = lang_data["pause_btn"] if self.should_stream else lang_data["generate_btn"] control_variant = "secondary" if self.should_stream else "primary" status_value = lang_data["completed"] if self.stream_completed else lang_data["interrupted"] return ( gr.update( value=control_value, variant=control_variant ), gr.update( value=status_value, ), gr.update(), gr.update(interactive = not self.should_stream) ) def reset_workspace(self): """重置工作区状态""" self.stream_completed = False self.should_stream = False self.in_cot = True return self.ui_state_controller() + ("", "", LANGUAGE_CONFIG["en"]["bot_default"]) class CoordinationManager: """管理人类与AI的协同节奏""" def __init__(self, paragraph_threshold, initial_content): self.paragraph_threshold = paragraph_threshold self.initial_paragraph_count = initial_content.count("\n\n") self.triggered = False def should_pause_for_human(self, current_content): if self.paragraph_threshold <= 0 or self.triggered: return False current_paragraphs = current_content.count("\n\n") if current_paragraphs - self.initial_paragraph_count >= self.paragraph_threshold: self.triggered = True return True return False class ConvoState: """State of current ROUND of convo""" def __init__(self): self.throughput = AppConfig.DEFAULT_THROUGHPUT self.sync_threshold = AppConfig.SYNC_THRESHOLD_DEFAULT self.current_language = "en" self.convo = [] self.initialize_new_round() def initialize_new_round(self): self.current = {} self.current["user"] = "" self.current["cot"] = "" self.current["result"] = "" self.convo.append(self.current) def flatten_output(self): output = [] for round in self.convo: output.append({"role": "user", "content": round["user"]}) if len(round["cot"])>0: output.append({"role": "assistant", "content": round["cot"], "metadata":{"title": f"Chain of Thought"}}) if len(round["result"])>0: output.append({"role": "assistant", "content": round["result"]}) return output def generate_ai_response(self, user_prompt, current_content, dynamic_state): lang_data = LANGUAGE_CONFIG[self.current_language] dynamic_state.stream_completed = False full_response = current_content api_client = OpenAI( api_key=os.getenv("API_KEY"), base_url=os.getenv("API_URL"), timeout=AppConfig.API_TIMEOUT ) coordinator = CoordinationManager(self.sync_threshold, current_content) try: messages = [ {"role": "user", "content": user_prompt}, {"role": "assistant", "content": f"\n{current_content}", "prefix": True} ] self.current["user"] = user_prompt response_stream = api_client.chat.completions.create( model=os.getenv("API_MODEL"), messages=messages, stream=True, timeout=AppConfig.API_TIMEOUT ) for chunk in response_stream: chunk_content = chunk.choices[0].delta.content if coordinator.should_pause_for_human(full_response): dynamic_state.should_stream = False if not dynamic_state.should_stream: break if chunk_content: full_response += chunk_content # Update Convo State think_complete = "" in full_response dynamic_state.in_cot = not think_complete if think_complete: self.current["cot"], self.current["result"] = full_response.split("") else: self.current["cot"], self.current["result"] = (full_response, "") status = lang_data["loading_thinking"] if dynamic_state.in_cot else lang_data["loading_output"] yield full_response, status, self.flatten_output() interval = 1.0 / self.throughput start_time = time.time() while (time.time() - start_time) < interval and dynamic_state.should_stream: time.sleep(0.005) except Exception as e: error_msg = LANGUAGE_CONFIG[self.current_language].get("error", "Error") full_response += f"\n\n[{error_msg}: {str(e)}]" yield full_response, error_msg, status, self.flatten_output() + [{"role":"assistant","content": error_msg, "metadata":{"title": f"❌Error"}}] finally: dynamic_state.should_stream = False if "status" not in locals(): status = "Whoops... ERROR" if 'response_stream' in locals(): response_stream.close() yield full_response, status, self.flatten_output() def update_interface_language(selected_lang, convo_state, dynamic_state): """更新界面语言配置""" convo_state.current_language = selected_lang dynamic_state.current_language = selected_lang lang_data = LANGUAGE_CONFIG[selected_lang] return [ gr.update(value=f"{lang_data['title']}"), gr.update(label=lang_data["prompt_label"], placeholder=lang_data["prompt_placeholder"]), gr.update(label=lang_data["editor_label"], placeholder=lang_data["editor_placeholder"]), gr.update(label=lang_data["sync_threshold_label"], info=lang_data["sync_threshold_info"]), gr.update(label=lang_data["throughput_label"], info=lang_data["throughput_info"]), gr.update( value=lang_data["pause_btn"] if dynamic_state.should_stream else lang_data["generate_btn"], variant="secondary" if dynamic_state.should_stream else "primary" ), gr.update(label=lang_data["language_label"]), gr.update(value=lang_data["clear_btn"], interactive = not dynamic_state.should_stream), gr.update(value=lang_data["introduction"]), gr.update(value=lang_data["bot_default"]), ] theme = gr.themes.Base(font="system-ui", primary_hue="stone") with gr.Blocks(theme=theme, css_paths="styles.css") as demo: convo_state = gr.State(ConvoState) dynamic_state = gr.State(DynamicState) # DynamicState is now a separate state with gr.Row(variant=""): title_md = gr.Markdown(f"## {LANGUAGE_CONFIG['en']['title']}", container=False) lang_selector = gr.Dropdown( choices=["en", "zh"], value="en", elem_id="compact_lang_selector", scale=0, container=False ) with gr.Row(equal_height=True): # 对话面板 with gr.Column(scale=1, min_width=500): chatbot = gr.Chatbot(type="messages", height=300, value=LANGUAGE_CONFIG['en']['bot_default'], group_consecutive_messages=False, show_copy_all_button=True, show_share_button=True, ) prompt_input = gr.Textbox( label=LANGUAGE_CONFIG["en"]["prompt_label"], lines=2, placeholder=LANGUAGE_CONFIG["en"]["prompt_placeholder"], max_lines=5, ) with gr.Row(): control_button = gr.Button( value=LANGUAGE_CONFIG["en"]["generate_btn"], variant="primary" ) next_turn_btn = gr.Button( value=LANGUAGE_CONFIG["en"]["clear_btn"], interactive=True ) status_indicator = gr.Markdown(AppConfig.LOADING_DEFAULT) intro_md = gr.Markdown(LANGUAGE_CONFIG["en"]["introduction"], visible=False) # 思考编辑面板 with gr.Column(scale=1, min_width=400): thought_editor = gr.Textbox( label=LANGUAGE_CONFIG["en"]["editor_label"], lines=16, placeholder=LANGUAGE_CONFIG["en"]["editor_placeholder"], autofocus=True, elem_id="editor" ) with gr.Row(): sync_threshold_slider = gr.Slider( minimum=0, maximum=20, value=AppConfig.SYNC_THRESHOLD_DEFAULT, step=1, label=LANGUAGE_CONFIG["en"]["sync_threshold_label"], info=LANGUAGE_CONFIG["en"]["sync_threshold_info"] ) throughput_control = gr.Slider( minimum=1, maximum=100, value=AppConfig.DEFAULT_THROUGHPUT, step=1, label=LANGUAGE_CONFIG["en"]["throughput_label"], info=LANGUAGE_CONFIG["en"]["throughput_info"] ) # 交互逻辑 stateful_ui = (control_button, status_indicator, thought_editor, next_turn_btn) throughput_control.change( lambda val, s: setattr(s, "throughput", val), [throughput_control, convo_state], None, queue=False ) sync_threshold_slider.change( lambda val, s: setattr(s, "sync_threshold", val), [sync_threshold_slider, convo_state], None, queue=False ) def wrap_stream_generator(convo_state, dynamic_state, prompt, content): # Pass dynamic_state here for response in convo_state.generate_ai_response(prompt, content, dynamic_state): # Pass dynamic_state to generate_ai_response yield response gr.on( #主按钮trigger [control_button.click, prompt_input.submit, thought_editor.submit], lambda d: d.control_button_handler(), # Pass dynamic_state to control_button_handler [dynamic_state], stateful_ui, show_progress=False ).then( #生成事件 wrap_stream_generator, # Pass both states [convo_state, dynamic_state, prompt_input, thought_editor], [thought_editor, status_indicator, chatbot], concurrency_limit=100 ).then( #生成终止后UI状态判断 lambda d: d.ui_state_controller(), # Pass dynamic_state to ui_state_controller [dynamic_state], stateful_ui, show_progress=False, ) next_turn_btn.click( lambda d: d.reset_workspace(), # Pass dynamic_state to reset_workspace [dynamic_state], stateful_ui + (thought_editor, prompt_input, chatbot), queue=False ) lang_selector.change( lambda lang, s, d: update_interface_language(lang, s, d), # Pass dynamic_state to update_interface_language [lang_selector, convo_state, dynamic_state], [title_md, prompt_input, thought_editor, sync_threshold_slider, throughput_control, control_button, lang_selector, next_turn_btn, intro_md, chatbot], queue=False ) if __name__ == "__main__": demo.queue(default_concurrency_limit=10000) demo.launch()