from openai import OpenAI
from dotenv import load_dotenv
import os
import threading
import time
import gradio as gr
from lang import LANGUAGE_CONFIG
# 环境变量预校验
load_dotenv(override=True)
required_env_vars = ["API_KEY", "API_URL", "API_MODEL"]
missing_vars = [var for var in required_env_vars if not os.getenv(var)]
if missing_vars:
raise EnvironmentError(f"Missing required environment variables: {', '.join(missing_vars)}")
class AppConfig:
DEFAULT_THROUGHPUT = 10
SYNC_THRESHOLD_DEFAULT = 0
API_TIMEOUT = 20
LOADING_DEFAULT = "✅ Ready!
Think together with AI. Use Shift+Enter to toggle generation"
class DynamicState:
"""动态UI状态"""
def __init__(self):
self.should_stream = False
self.stream_completed = False
self.in_cot = True
self.current_language = "en"
def control_button_handler(self):
"""切换流式传输状态"""
if self.should_stream:
self.should_stream = False
else:
self.stream_completed = False
self.should_stream = True
return self.ui_state_controller()
def ui_state_controller(self):
"""生成动态UI组件状态"""
print("UPDATE UI!!")
# [control_button, status_indicator, thought_editor, reset_button]
lang_data = LANGUAGE_CONFIG[self.current_language]
control_value = lang_data["pause_btn"] if self.should_stream else lang_data["generate_btn"]
control_variant = "secondary" if self.should_stream else "primary"
status_value = lang_data["completed"] if self.stream_completed else lang_data["interrupted"]
return (
gr.update(
value=control_value,
variant=control_variant
),
gr.update(
value=status_value,
),
gr.update(),
gr.update(interactive = not self.should_stream)
)
def reset_workspace(self):
"""重置工作区状态"""
self.stream_completed = False
self.should_stream = False
self.in_cot = True
return self.ui_state_controller() + ("", "", LANGUAGE_CONFIG["en"]["bot_default"])
class CoordinationManager:
"""管理人类与AI的协同节奏"""
def __init__(self, paragraph_threshold, initial_content):
self.paragraph_threshold = paragraph_threshold
self.initial_paragraph_count = initial_content.count("\n\n")
self.triggered = False
def should_pause_for_human(self, current_content):
if self.paragraph_threshold <= 0 or self.triggered:
return False
current_paragraphs = current_content.count("\n\n")
if current_paragraphs - self.initial_paragraph_count >= self.paragraph_threshold:
self.triggered = True
return True
return False
class ConvoState:
"""State of current ROUND of convo"""
def __init__(self):
self.throughput = AppConfig.DEFAULT_THROUGHPUT
self.sync_threshold = AppConfig.SYNC_THRESHOLD_DEFAULT
self.current_language = "en"
self.convo = []
self.initialize_new_round()
def initialize_new_round(self):
self.current = {}
self.current["user"] = ""
self.current["cot"] = ""
self.current["result"] = ""
self.convo.append(self.current)
def flatten_output(self):
output = []
for round in self.convo:
output.append({"role": "user", "content": round["user"]})
if len(round["cot"])>0:
output.append({"role": "assistant", "content": round["cot"], "metadata":{"title": f"Chain of Thought"}})
if len(round["result"])>0:
output.append({"role": "assistant", "content": round["result"]})
return output
def generate_ai_response(self, user_prompt, current_content, dynamic_state):
lang_data = LANGUAGE_CONFIG[self.current_language]
dynamic_state.stream_completed = False
full_response = current_content
api_client = OpenAI(
api_key=os.getenv("API_KEY"),
base_url=os.getenv("API_URL"),
timeout=AppConfig.API_TIMEOUT
)
coordinator = CoordinationManager(self.sync_threshold, current_content)
try:
messages = [
{"role": "user", "content": user_prompt},
{"role": "assistant", "content": f"\n{current_content}", "prefix": True}
]
self.current["user"] = user_prompt
response_stream = api_client.chat.completions.create(
model=os.getenv("API_MODEL"),
messages=messages,
stream=True,
timeout=AppConfig.API_TIMEOUT
)
for chunk in response_stream:
chunk_content = chunk.choices[0].delta.content
if coordinator.should_pause_for_human(full_response):
dynamic_state.should_stream = False
if not dynamic_state.should_stream:
break
if chunk_content:
full_response += chunk_content
# Update Convo State
think_complete = "" in full_response
dynamic_state.in_cot = not think_complete
if think_complete:
self.current["cot"], self.current["result"] = full_response.split("")
else:
self.current["cot"], self.current["result"] = (full_response, "")
status = lang_data["loading_thinking"] if dynamic_state.in_cot else lang_data["loading_output"]
yield full_response, status, self.flatten_output()
interval = 1.0 / self.throughput
start_time = time.time()
while (time.time() - start_time) < interval and dynamic_state.should_stream:
time.sleep(0.005)
except Exception as e:
error_msg = LANGUAGE_CONFIG[self.current_language].get("error", "Error")
full_response += f"\n\n[{error_msg}: {str(e)}]"
yield full_response, error_msg, status, self.flatten_output() + [{"role":"assistant","content": error_msg, "metadata":{"title": f"❌Error"}}]
finally:
dynamic_state.should_stream = False
if "status" not in locals():
status = "Whoops... ERROR"
if 'response_stream' in locals():
response_stream.close()
yield full_response, status, self.flatten_output()
def update_interface_language(selected_lang, convo_state, dynamic_state):
"""更新界面语言配置"""
convo_state.current_language = selected_lang
dynamic_state.current_language = selected_lang
lang_data = LANGUAGE_CONFIG[selected_lang]
return [
gr.update(value=f"{lang_data['title']}"),
gr.update(label=lang_data["prompt_label"], placeholder=lang_data["prompt_placeholder"]),
gr.update(label=lang_data["editor_label"], placeholder=lang_data["editor_placeholder"]),
gr.update(label=lang_data["sync_threshold_label"], info=lang_data["sync_threshold_info"]),
gr.update(label=lang_data["throughput_label"], info=lang_data["throughput_info"]),
gr.update(
value=lang_data["pause_btn"] if dynamic_state.should_stream else lang_data["generate_btn"],
variant="secondary" if dynamic_state.should_stream else "primary"
),
gr.update(label=lang_data["language_label"]),
gr.update(value=lang_data["clear_btn"], interactive = not dynamic_state.should_stream),
gr.update(value=lang_data["introduction"]),
gr.update(value=lang_data["bot_default"]),
]
theme = gr.themes.Base(font="system-ui", primary_hue="stone")
with gr.Blocks(theme=theme, css_paths="styles.css") as demo:
convo_state = gr.State(ConvoState)
dynamic_state = gr.State(DynamicState) # DynamicState is now a separate state
with gr.Row(variant=""):
title_md = gr.Markdown(f"## {LANGUAGE_CONFIG['en']['title']}", container=False)
lang_selector = gr.Dropdown(
choices=["en", "zh"],
value="en",
elem_id="compact_lang_selector",
scale=0,
container=False
)
with gr.Row(equal_height=True):
# 对话面板
with gr.Column(scale=1, min_width=500):
chatbot = gr.Chatbot(type="messages", height=300,
value=LANGUAGE_CONFIG['en']['bot_default'],
group_consecutive_messages=False,
show_copy_all_button=True,
show_share_button=True,
)
prompt_input = gr.Textbox(
label=LANGUAGE_CONFIG["en"]["prompt_label"],
lines=2,
placeholder=LANGUAGE_CONFIG["en"]["prompt_placeholder"],
max_lines=5,
)
with gr.Row():
control_button = gr.Button(
value=LANGUAGE_CONFIG["en"]["generate_btn"],
variant="primary"
)
next_turn_btn = gr.Button(
value=LANGUAGE_CONFIG["en"]["clear_btn"],
interactive=True
)
status_indicator = gr.Markdown(AppConfig.LOADING_DEFAULT)
intro_md = gr.Markdown(LANGUAGE_CONFIG["en"]["introduction"], visible=False)
# 思考编辑面板
with gr.Column(scale=1, min_width=400):
thought_editor = gr.Textbox(
label=LANGUAGE_CONFIG["en"]["editor_label"],
lines=16,
placeholder=LANGUAGE_CONFIG["en"]["editor_placeholder"],
autofocus=True,
elem_id="editor"
)
with gr.Row():
sync_threshold_slider = gr.Slider(
minimum=0,
maximum=20,
value=AppConfig.SYNC_THRESHOLD_DEFAULT,
step=1,
label=LANGUAGE_CONFIG["en"]["sync_threshold_label"],
info=LANGUAGE_CONFIG["en"]["sync_threshold_info"]
)
throughput_control = gr.Slider(
minimum=1,
maximum=100,
value=AppConfig.DEFAULT_THROUGHPUT,
step=1,
label=LANGUAGE_CONFIG["en"]["throughput_label"],
info=LANGUAGE_CONFIG["en"]["throughput_info"]
)
# 交互逻辑
stateful_ui = (control_button, status_indicator, thought_editor, next_turn_btn)
throughput_control.change(
lambda val, s: setattr(s, "throughput", val),
[throughput_control, convo_state],
None,
queue=False
)
sync_threshold_slider.change(
lambda val, s: setattr(s, "sync_threshold", val),
[sync_threshold_slider, convo_state],
None,
queue=False
)
def wrap_stream_generator(convo_state, dynamic_state, prompt, content): # Pass dynamic_state here
for response in convo_state.generate_ai_response(prompt, content, dynamic_state): # Pass dynamic_state to generate_ai_response
yield response
gr.on( #主按钮trigger
[control_button.click, prompt_input.submit, thought_editor.submit],
lambda d: d.control_button_handler(), # Pass dynamic_state to control_button_handler
[dynamic_state],
stateful_ui,
show_progress=False
).then( #生成事件
wrap_stream_generator, # Pass both states
[convo_state, dynamic_state, prompt_input, thought_editor],
[thought_editor, status_indicator, chatbot],
concurrency_limit=100
).then( #生成终止后UI状态判断
lambda d: d.ui_state_controller(), # Pass dynamic_state to ui_state_controller
[dynamic_state],
stateful_ui,
show_progress=False,
)
next_turn_btn.click(
lambda d: d.reset_workspace(), # Pass dynamic_state to reset_workspace
[dynamic_state],
stateful_ui + (thought_editor, prompt_input, chatbot),
queue=False
)
lang_selector.change(
lambda lang, s, d: update_interface_language(lang, s, d), # Pass dynamic_state to update_interface_language
[lang_selector, convo_state, dynamic_state],
[title_md, prompt_input, thought_editor, sync_threshold_slider,
throughput_control, control_button, lang_selector, next_turn_btn, intro_md, chatbot],
queue=False
)
if __name__ == "__main__":
demo.queue(default_concurrency_limit=10000)
demo.launch()