BitsAndBytes / app.py
MekkCyber
update
40a26a8
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel, BitsAndBytesConfig
import tempfile
from huggingface_hub import HfApi
from huggingface_hub import list_models
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from packaging import version
import os
def hello(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None) -> str:
# ^ expect a gr.OAuthProfile object as input to get the user's profile
# if the user is not logged in, profile will be None
if profile is None:
return "Hello !"
return f"Hello {profile.name} ! Welcome to BitsAndBytes Space"
def check_model_exists(oauth_token: gr.OAuthToken | None, username, quantization_type, model_name, quantized_model_name):
"""Check if a model exists in the user's Hugging Face repository."""
try:
models = list_models(author=username, token=oauth_token.token)
model_names = [model.id for model in models]
if quantized_model_name :
repo_name = f"{username}/{quantized_model_name}"
else :
repo_name = f"{username}/{model_name.split('/')[-1]}-BNB-{quantization_type}"
if repo_name in model_names:
return f"Model '{repo_name}' already exists in your repository."
else:
return None # Model does not exist
except Exception as e:
return f"Error checking model existence: {str(e)}"
def create_model_card(model_name, quantization_type, threshold, quant_type_4, double_quant_4,):
model_card = f"""---
base_model:
- {model_name}
---
# {model_name} (Quantized)
## Description
This model is a quantized version of the original model `{model_name}`. It has been quantized using {quantization_type} quantization with bitsandbytes.
## Quantization Details
- **Quantization Type**: {quantization_type}
- **Threshold**: {threshold if quantization_type == "int8" else None}
- **bnb_4bit_quant_type**: {quant_type_4 if quantization_type == "int4" else None}
- **bnb_4bit_use_double_quant**: {double_quant_4 if quantization_type=="int4" else None}
## Usage
You can use this model in your applications by loading it directly from the Hugging Face Hub:
```python
from transformers import AutoModel
model = AutoModel.from_pretrained("{model_name}")"""
return model_card
def load_model(model_name, quantization_config, auth_token) :
return AutoModel.from_pretrained(model_name, quantization_config=quantization_config, device_map="cpu", use_auth_token=auth_token.token)
def quantize_model(model_name, quantization_type, threshold, quant_type_4, double_quant_4, auth_token=None, username=None):
print(f"Quantizing model: {quantization_type}")
if quantization_type=="int4":
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type=quant_type_4,
bnb_4bit_use_double_quant=True if double_quant_4 == "True" else False,
)
else :
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_threshold=threshold,
)
model = load_model(model_name, quantization_config=quantization_config, auth_token=auth_token)
return model
def save_model(model, model_name, quantization_type, threshold, quant_type_4, double_quant_4, username=None, auth_token=None, quantized_model_name=None):
print("Saving quantized model")
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname, safe_serialization=True, use_auth_token=auth_token.token)
if quantized_model_name :
repo_name = f"{username}/{quantized_model_name}"
else :
repo_name = f"{username}/{model_name.split('/')[-1]}-BNB-{quantization_type}"
model_card = create_model_card(repo_name, quantization_type, threshold, quant_type_4, double_quant_4)
with open(os.path.join(tmpdirname, "README.md"), "w") as f:
f.write(model_card)
# Push to Hub
api = HfApi(token=auth_token.token)
api.create_repo(repo_name, exist_ok=True)
api.upload_folder(
folder_path=tmpdirname,
repo_id=repo_name,
repo_type="model",
)
return f'<h1> 🤗 DONE</h1><br/>Find your repo here: <a href="https://huggingface.co/{repo_name}" target="_blank" style="text-decoration:underline">{repo_name}</a>'
def is_float(value):
try:
float(value)
return True
except ValueError:
return False
def quantize_and_save(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None, model_name, quantization_type, threshold, quant_type_4, double_quant_4, quantized_model_name):
if oauth_token is None :
return "Error : Please Sign In to your HuggingFace account to use the quantizer"
if not profile:
return "Error: Please Sign In to your HuggingFace account to use the quantizer"
exists_message = check_model_exists(oauth_token, profile.username, quantization_type, model_name, quantized_model_name)
if exists_message :
return exists_message
if not is_float(threshold) :
return "Threshold must be a float"
threshold = float(threshold)
# try:
quantized_model = quantize_model(model_name, quantization_type, threshold, quant_type_4, double_quant_4, oauth_token, profile.username)
return save_model(quantized_model, model_name, quantization_type, threshold, quant_type_4, double_quant_4, profile.username, oauth_token, quantized_model_name)
# except Exception as e :
# print(e)
# return f"An error occurred: {str(e)}"
css="""/* Custom CSS to allow scrolling */
.gradio-container {overflow-y: auto;}
.custom-radio {
margin-left: 20px; /* Adjust the value as needed */
}
"""
with gr.Blocks(theme=gr.themes.Ocean(), css=css) as demo:
gr.Markdown(
"""
# 🤗 LLM Model BitsAndBytes Quantization App
Quantize your favorite Hugging Face models using BitsAndBytes and save them to your profile!
"""
)
gr.LoginButton(elem_id="login-button", elem_classes="center-button", min_width=250)
m1 = gr.Markdown()
demo.load(hello, inputs=None, outputs=m1)
# radio = gr.Radio(["show", "hide"], label="Show Instructions")
instructions = gr.Markdown(
"""
## Instructions
1. Login to your HuggingFace account
2. Enter the name of the Hugging Face LLM model you want to quantize (Make sure you have access to it)
3. Choose the quantization type.
4. Optionally, specify the group size.
5. Optionally, choose a custom name for the quantized model
6. Click "Quantize and Save Model" to start the process.
7. Once complete, you'll receive a link to the quantized model on Hugging Face.
Note: This process may take some time depending on the model size and your hardware you can check the container logs to see where are you at in the process!
""",
visible=False
)
instructions_visible = gr.State(False)
toggle_button = gr.Button("▼ Show Instructions", elem_id="toggle-button", elem_classes="toggle-button")
def toggle_instructions(instructions_visible):
new_visibility = not instructions_visible # Toggle the state
new_label = "▲ Hide Instructions" if new_visibility else "▼ Show Instructions" # Change label based on visibility
return gr.update(visible=new_visibility), new_visibility, gr.update(value=new_label) # Toggle visibility and return new state
toggle_button.click(toggle_instructions, instructions_visible, [instructions, instructions_visible, toggle_button])
# def update_visibility(radio): # Accept the event argument, even if not used
# value = radio # Get the selected value from the radio button
# if value == "show":
# return gr.Textbox(visible=True) #make it visible
# else:
# return gr.Textbox(visible=False)
# radio.change(update_visibility, radio, instructions)
with gr.Row():
with gr.Column():
with gr.Row():
model_name = HuggingfaceHubSearch(
label="Hub Model ID",
placeholder="Search for model id on Huggingface",
search_type="model",
)
with gr.Row():
with gr.Column():
quantization_type = gr.Dropdown(
info="Quantization Type",
choices=["int4", "int8"],
value="int8",
filterable=False,
show_label=False,
)
threshold_8 = gr.Textbox(
info="Outlier threshold",
value=6,
interactive=True,
show_label=False,
visible=True
)
quant_type_4 = gr.Dropdown(
info="The quantization data type in the bnb.nn.Linear4Bit layers",
choices=["fp4", "nf4"],
value="fp4",
visible=False,
show_label=False
)
radio_4 = gr.Radio(["False", "True"], info="Use Double Quant", visible=False, value="False", elem_classes="custom_radio")
def update_visibility(quantization_type):
return gr.update(visible=(quantization_type=="int8")), gr.update(visible=(quantization_type=="int4")), gr.update(visible=(quantization_type=="int4"))
quantization_type.change(fn=update_visibility, inputs=quantization_type, outputs=[threshold_8, quant_type_4, radio_4])
quantized_model_name = gr.Textbox(
info="Model Name (optional : to override default)",
value="",
interactive=True,
show_label=False
)
with gr.Column():
quantize_button = gr.Button("Quantize and Save Model", variant="primary")
output_link = gr.Markdown(label="Quantized Model Link", container=True, min_height=80)
# Adding CSS styles for the username box
demo.css = """
#username-box {
background-color: #f0f8ff; /* Light color */
border-radius: 8px;
padding: 10px;
}
"""
demo.css = """
.center-button {
display: flex;
justify-content: center;
align-items: center;
margin: 0 auto; /* Center horizontally */
}
"""
quantize_button.click(
fn=quantize_and_save,
inputs=[model_name, quantization_type, threshold_8, quant_type_4, radio_4, quantized_model_name],
outputs=[output_link]
)
if __name__ == "__main__":
demo.launch(share=True)
# Launch the app
# demo.launch(share=True, debug=True)