Spaces:
Runtime error
Runtime error
File size: 21,911 Bytes
ac6c40f 57616af ac6c40f d1a58c9 cc73923 ef1f338 9994065 d1a58c9 57616af d1a58c9 ac6c40f 57616af d1a58c9 57616af d1a58c9 57616af d1a58c9 57616af d1a58c9 8a2ec29 9994065 d1a58c9 57616af d1a58c9 57616af 13fd677 57616af d1a58c9 8a2ec29 d1a58c9 57616af d1a58c9 cc73923 d1a58c9 57616af d1a58c9 57616af d1a58c9 57616af d1a58c9 8a2ec29 ef1f338 d1a58c9 57616af ef1f338 8a2ec29 ef1f338 8a2ec29 9999db9 8a2ec29 ef1f338 8a2ec29 ef1f338 d1a58c9 57616af 9994065 9999db9 9994065 d1a58c9 57616af 9994065 9999db9 9994065 d1a58c9 57616af 9994065 d1a58c9 ac6c40f 57616af d1a58c9 57616af 9994065 57616af d1a58c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
import streamlit as st
from .streamlit_utils import make_text_input
from .streamlit_utils import (
make_multiselect,
make_selectbox,
make_text_area,
make_text_input,
make_radio,
)
N_FIELDS_ORIGINAL = 4
N_FIELDS_LANGUAGE = 11
N_FIELDS_ANNOTATIONS = 10
N_FIELDS_CONSENT = 4
N_FIELDS_PII = 7
N_FIELDS_MAINTENANCE = 6
N_FIELDS = (
N_FIELDS_ORIGINAL
+ N_FIELDS_LANGUAGE
+ N_FIELDS_ANNOTATIONS
+ N_FIELDS_CONSENT
+ N_FIELDS_PII
+ N_FIELDS_MAINTENANCE
)
def curation_page():
st.session_state.card_dict["curation"] = st.session_state.card_dict.get(
"curation", {}
)
with st.expander("Original Curation", expanded=False):
key_pref = ["curation", "original"]
st.session_state.card_dict["curation"]["original"] = st.session_state.card_dict[
"curation"
].get("original", {})
make_text_area(
label="Original curation rationale",
key_list=key_pref + ["rationale"],
help="Describe the curation rationale behind the original dataset(s).",
)
make_text_area(
label="What was the communicative goal?",
key_list=key_pref + ["communicative"],
help="Describe the communicative goal that the original dataset(s) was trying to represent.",
)
make_radio(
label="Is the dataset aggregated from different data sources?",
options=["no", "yes"],
key_list=key_pref + ["is-aggregated"],
help="e.g. Wikipedia, movi dialogues, etc.",
)
if st.session_state.card_dict["curation"]["original"]["is-aggregated"] == "yes":
make_text_area(
label="List the sources (one per line)",
key_list=key_pref + ["aggregated-sources"],
help="One source per line",
)
else:
st.session_state.card_dict["curation"]["original"]["aggregated-sources"] = "N/A"
with st.expander("Language Data", expanded=False):
key_pref = ["curation", "language"]
st.session_state.card_dict["curation"]["language"] = st.session_state.card_dict[
"curation"
].get("language", {})
make_multiselect(
label="How was the language data obtained?",
options=[
"Found",
"Created for the dataset",
"Crowdsourced",
"Machine-generated",
"Other",
],
key_list=key_pref + ["obtained"],
)
if "Found" in st.session_state.card_dict["curation"]["language"].get("obtained", []):
make_multiselect(
label="If found, where from?",
options=["Multiple websites", "Single website", "Offline media collection", "Other"],
key_list=key_pref + ["found"],
help="select N/A if none of the language data was found",
)
else:
st.session_state.card_dict["curation"]["language"]["found"] = []
if "Crowdsourced" in st.session_state.card_dict["curation"]["language"].get("obtained", []):
make_multiselect(
label="If crowdsourced, where from?",
options=[
"Amazon Mechanical Turk",
"Other crowdworker platform",
"Participatory experiment",
"Other",
],
key_list=key_pref + ["crowdsourced"],
help="select N/A if none of the language data was crowdsourced",
)
else:
st.session_state.card_dict["curation"]["language"]["crowdsourced"] = []
if "Created for the dataset" in st.session_state.card_dict["curation"]["language"].get("obtained", []):
make_text_area(
label="If created for the dataset, describe the creation process.",
key_list=key_pref + ["created"],
)
else:
st.session_state.card_dict["curation"]["language"]["created"] = "N/A"
if "Machine-generated" in st.session_state.card_dict["curation"]["language"].get("obtained", []):
make_text_input(
label="If text was machine-generated for the dataset, provide a link to the generation method if available (N/A otherwise).",
key_list=key_pref + ["machine-generated"],
help="if the generation code is unavailable, enter N/A",
)
else:
st.session_state.card_dict["curation"]["language"]["machine-generated"] = "N/A"
make_text_area(
label="What further information do we have on the language producers?",
key_list=key_pref + ["producers-description"],
help="Provide a description of the context in which the language was produced and who produced it.",
)
make_text_area(
label="Does the language in the dataset focus on specific topics? How would you describe them?",
key_list=key_pref + ["topics"],
help="for example, tourism, entertainment, etc.",
)
make_selectbox(
label="Was the text validated by a different worker or a data curator?",
options=[
"not validated",
"validated by crowdworker",
"validated by data curator",
"other",
],
key_list=key_pref + ["validated"],
help="this question is about human or human-in-the-loop validation only",
)
make_text_area(
label="How was the text data pre-processed? (Enter N/A if the text was not pre-processed)",
key_list=key_pref + ["pre-processed"],
help="List the steps in preprocessing the data for the dataset. Enter N/A if no steps were taken.",
)
make_selectbox(
label="Were text instances selected or filtered?",
options=["not filtered", "manually", "algorithmically", "hybrid"],
key_list=key_pref + ["is-filtered"],
)
if st.session_state.card_dict["curation"]["language"]["is-filtered"] == "not filtered":
st.session_state.card_dict["curation"]["language"]["filtered-criteria"] = "N/A"
else:
make_text_area(
label="What were the selection criteria?",
key_list=key_pref + ["filtered-criteria"],
help="Describe the process for selecting instances to include in the dataset, including any tools used.",
)
with st.expander("Structured Annotations", expanded=False):
key_pref = ["curation", "annotations"]
st.session_state.card_dict["curation"][
"annotations"
] = st.session_state.card_dict["curation"].get("annotations", {})
make_selectbox(
label="Does the dataset have additional annotations for each instance?",
options=["none", "found", "automatically created", "expert created", "crowd-sourced"],
key_list=key_pref + ["origin"],
help="Was any additional data collected?",
)
# If expert or crowdsourced, this branch
if st.session_state.card_dict["curation"]["annotations"]["origin"] in ["expert created", "crowd-sourced"]:
make_selectbox(
label="What is the number of raters?",
options=["unknown", "1", "2<n<10", "11<n<50", "51<n<100", "n>100"],
key_list=key_pref + ["rater-number"],
help="How many raters were used to create the additional annotations?",
)
make_text_area(
label="Describe the qualifications required of an annotator.",
key_list=key_pref + ["rater-qualifications"],
help="e.g., languages or dialects they speak, education requirements, number of HITs (if MTurk).",
)
make_selectbox(
label="How many annotators saw each training example?",
options=["0", "1", "2", "3", "4", "5", ">5"],
key_list=key_pref + ["rater-training-num"],
help="",
)
make_selectbox(
label="How many annotators saw each test example?",
options=["0", "1", "2", "3", "4", "5", ">5"],
key_list=key_pref + ["rater-test-num"],
help="",
)
make_radio(
label="Was an annotation service used?",
options=["no", "yes", "unknown"],
key_list=key_pref + ["rater-annotation-service-bool"],
help="",
)
if st.session_state.card_dict["curation"]["annotations"]["rater-annotation-service-bool"] == "yes":
make_multiselect(
label="Which annotation services were used?",
options=[
"Amazon Mechanical Turk", "Prolific Academic",
"Upwork", "Appen", "Crowdflower", "other"
],
key_list=key_pref + ["rater-annotation-service"],
)
else:
st.session_state.card_dict["curation"]["annotations"]["rater-annotation-service"] = []
else:
st.session_state.card_dict["curation"]["annotations"]["rater-number"] = "N/A"
st.session_state.card_dict["curation"]["annotations"]["rater-qualifications"] = "N/A"
st.session_state.card_dict["curation"]["annotations"]["rater-training-num"] = "N/A"
st.session_state.card_dict["curation"]["annotations"]["rater-test-num"] = "N/A"
st.session_state.card_dict["curation"]["annotations"]["rater-annotation-service-bool"] = "no"
st.session_state.card_dict["curation"]["annotations"]["rater-annotation-service"] = []
if st.session_state.card_dict["curation"]["annotations"]["origin"] != "none":
make_text_area(
label="Purpose and values for each annoation",
key_list=key_pref + ["values"],
help="Describe the purpose and possible values for each kind of annotation.",
)
make_selectbox(
label="Quality control measures?",
options=["none", "unknown", "validated by another rater", "validated by data curators", "validated through automated script", "other"],
key_list=key_pref + ["quality-control"],
help="How was annotation quality controlled for / what control measures were put in place to ensure annotation quality?",
)
if st.session_state.card_dict["curation"]["annotations"]["quality-control"] in ["none", "unknown"]:
st.session_state.card_dict["curation"]["annotations"]["quality-control-details"] = "N/A"
else:
make_text_area(
label="Describe the quality control measures that were taken.",
key_list=key_pref + ["quality-control-details"],
help="Describe how quality was ensured in the data curation process.",
)
else:
st.session_state.card_dict["curation"]["annotations"]["values"] = "N/A"
st.session_state.card_dict["curation"]["annotations"]["quality-control"] = []
st.session_state.card_dict["curation"]["annotations"]["quality-control-details"] = "N/A"
with st.expander("Consent", expanded=False):
key_pref = ["curation", "consent"]
st.session_state.card_dict["curation"]["consent"] = st.session_state.card_dict[
"curation"
].get("consent", {})
make_radio(
label="Was there a consent policy involved when gathering the data?",
options=["no", "yes"],
key_list=key_pref+["has-consent"],
)
if st.session_state.card_dict["curation"]["consent"]["has-consent"] == "yes":
make_text_area(
label="What was the consent policy?",
key_list=key_pref+["consent-policy"],
help="If available, provide the text that data creators were shown, else, describe the process.",
)
make_text_area(
label="What other downstream uses of the data did the original data creators and the data curators consent to?",
key_list=key_pref+["consent-other"],
)
st.session_state.card_dict["curation"]["consent"]["no-consent-justification"] = "N/A"
else:
st.session_state.card_dict["curation"]["consent"]["consent-policy"] = "N/A"
st.session_state.card_dict["curation"]["consent"]["consent-other"] = "N/A"
make_text_area(
label="If not, what is the justification for reusing the data?",
key_list=key_pref+["no-consent-justification"],
help="Why would be a justification the data without consent of the data creators in this case?",
)
with st.expander("Private Identifying Information (PII)", expanded=False):
key_pref = ["curation", "pii"]
st.session_state.card_dict["curation"]["pii"] = st.session_state.card_dict[
"curation"
].get("pii", {})
make_radio(
label="Does the source language data likely contain Personal Identifying Information about the data creators or subjects?",
options=["yes/very likely", "likely", "unlikely", "no PII"],
key_list=key_pref+["has-pii"],
help="most datasets have some form of PII: names, addresses, emails, account names, personal beliefs, gender, etc. - select `no PII` only if sure",
)
if st.session_state.card_dict["curation"]["pii"]["has-pii"] == "no PII":
make_text_area(
label="Provide a justification for selecting `no PII` above.",
key_list=key_pref+["no-pii-justification"],
help="for example, if the text is about general knowledge without references to the author or to any persons.",
)
st.session_state.card_dict["curation"]["pii"]["pii-categories"] = []
st.session_state.card_dict["curation"]["pii"]["is-pii-identified"] = "N/A"
st.session_state.card_dict["curation"]["pii"]["pii-identified-method"] = "N/A"
st.session_state.card_dict["curation"]["pii"]["is-pii-replaced"] = "N/A"
st.session_state.card_dict["curation"]["pii"]["pii-replaced-method"] = "N/A"
else:
st.session_state.card_dict["curation"]["pii"]["no-pii-justification"] = "N/A"
pii_help_text = """
- Personally identifying general information includes names, physical and email addresses, website accounts with names or handles, dates (birth, death, etc.), full-face photographs and comparable images, URLS, and biometric identifiers (fingerprints, voice, etc.).
- Personally identifying numbers include information such as telephone numbers, fax numbers, vehicle and device identifiers and serial numbers, social security numbers and equivalent, IP addresses, medical record numbers, health plan beneficiary numbers, account numbers, certificate/license numbers, and any other uniquely identifying numbers.
- Sensitive information includes descriptions of racial or ethnic origin, political opinions, religious or philosophical beliefs, trade-union membership, genetic data, health-related data, and data concerning a person's sex life or sexual orientation.
"""
make_multiselect(
label="What categories of PII are present or suspected in the data?",
options=["generic PII", "numeric PII", "sensitive information"],
key_list=key_pref+["pii-categories"],
help=pii_help_text,
)
make_radio(
label="Did the curators use any automatic/manual method to identify PII in the dataset?",
options=["no identification", "manual identification", "automatic identification", "mixed method"],
key_list=key_pref+["is-pii-identified"],
)
if st.session_state.card_dict["curation"]["pii"]["is-pii-identified"] == "no identification":
st.session_state.card_dict["curation"]["pii"]["pii-identified-method"] = "N/A"
st.session_state.card_dict["curation"]["pii"]["is-pii-replaced"] = "N/A"
st.session_state.card_dict["curation"]["pii"]["pii-replaced-method"] = "N/A"
else:
make_text_area(
label="Describe the method used to identify PII in the dataset",
key_list=key_pref+["pii-identified-method"],
)
make_radio(
label="Was the PII pseudonymized/handled somehow?",
options=["no", "yes"],
key_list=key_pref+["is-pii-replaced"],
)
if st.session_state.card_dict["curation"]["pii"]["is-pii-replaced"] == "yes":
make_text_area(
label="Describe the methods that were used to process the PII.",
key_list=key_pref+["pii-replaced-method"],
)
else:
st.session_state.card_dict["curation"]["pii"]["pii-replaced-method"] = "N/A"
with st.expander("Maintenance", expanded=False):
key_pref = ["curation", "maintenance"]
st.session_state.card_dict["curation"][
"maintenance"
] = st.session_state.card_dict["curation"].get("maintenance", {})
make_radio(
label="Does the original dataset have a maintenance plan?",
options=["no", "yes"],
key_list=key_pref+["has-maintenance"],
help="this can include planned update or a commitment to removing content on request",
)
if st.session_state.card_dict["curation"]["maintenance"]["has-maintenance"] == "yes":
make_text_area(
label="Describe the original dataset's maintenance plan.",
key_list=key_pref+["description"],
)
make_text_area(
label="Provide contact information of a person responsible for the dataset maintenance",
key_list=key_pref+["contact"],
)
make_radio(
label="Does the maintenance plan include a contestation mechanism allowing individuals to request removal fo content?",
options=["no mechanism", "form submission", "contact maintainer", "other"],
key_list=key_pref+["contestation-mechanism"],
)
if st.session_state.card_dict["curation"]["maintenance"]["contestation-mechanism"] == "no mechanism":
st.session_state.card_dict["curation"]["maintenance"]["contestation-link"] = "N/A"
st.session_state.card_dict["curation"]["maintenance"]["contestation-description"] = "N/A"
elif st.session_state.card_dict["curation"]["maintenance"]["contestation-mechanism"] == "other":
st.session_state.card_dict["curation"]["maintenance"]["contestation-link"] = "N/A"
make_text_area(
label="Describe the contestation mechanism",
key_list=key_pref+["contestation-description"],
)
else:
make_text_input(
label="Provide the form link or contact information",
key_list=key_pref+["contestation-link"],
)
st.session_state.card_dict["curation"]["maintenance"]["contestation-description"] = "N/A"
else:
st.session_state.card_dict["curation"]["maintenance"]["description"] = "N/A"
st.session_state.card_dict["curation"]["maintenance"]["contact"] = "N/A"
st.session_state.card_dict["curation"]["maintenance"]["contestation-mechanism"] = "N/A"
st.session_state.card_dict["curation"]["maintenance"]["contestation-link"] = "N/A"
st.session_state.card_dict["curation"]["maintenance"]["contestation-description"] = "N/A"
def curation_summary():
total_filled = sum(
[len(dct) for dct in st.session_state.card_dict.get("curation", {}).values()]
)
with st.expander(
f"Dataset Curation Completion - {total_filled} of {N_FIELDS}", expanded=False
):
completion_markdown = ""
completion_markdown += (
f"- **Overall completion:**\n - {total_filled} of {N_FIELDS} fields\n"
)
completion_markdown += f"- **Sub-section - Original Curation:**\n - {len(st.session_state.card_dict.get('curation', {}).get('original', {}))} of {N_FIELDS_ORIGINAL} fields\n"
completion_markdown += f"- **Sub-section - Language Data:**\n - {len(st.session_state.card_dict.get('curation', {}).get('language', {}))} of {N_FIELDS_LANGUAGE} fields\n"
completion_markdown += f"- **Sub-section - Structured Annotations:**\n - {len(st.session_state.card_dict.get('curation', {}).get('annotations', {}))} of {N_FIELDS_ANNOTATIONS} fields\n"
completion_markdown += f"- **Sub-section - Consent:**\n - {len(st.session_state.card_dict.get('curation', {}).get('consent', {}))} of {N_FIELDS_CONSENT} fields\n"
completion_markdown += f"- **Sub-section - PII:**\n - {len(st.session_state.card_dict.get('curation', {}).get('pii', {}))} of {N_FIELDS_PII} fields\n"
completion_markdown += f"- **Sub-section - Maintenance:**\n - {len(st.session_state.card_dict.get('curation', {}).get('maintenance', {}))} of {N_FIELDS_MAINTENANCE} fields\n"
st.markdown(completion_markdown)
|