# app.py from flask import Flask, request, jsonify from xgboost import XGBRegressor import pandas as pd import requests import os app = Flask(__name__) # Load the pre-trained model model = XGBRegressor() model.load_model('model.json') # Fetch data from Facebook API def fetch_data_from_api(query, geo_locations): url = f"https://graph.facebook.com/v17.0/act_597540533213624/targetingsearch" params = { "q": query, "geo_locations[countries]": geo_locations, "access_token": os.getenv('ACCESS_TOKEN') } response = requests.get(url, params=params) if response.status_code == 200: return response.json() else: raise Exception(f"Failed to fetch data from API. Status code: {response.status_code}") # Generate synthetic metrics def generate_synthetic_metrics(data): IMPRESSION_RATE = 0.10 # 10% of audience sees the ad CTR = 0.05 # 5% of impressions result in clicks CONVERSION_RATE = 0.02 # 2% of clicks result in conversions CPM = 5 # $5 per 1000 impressions REVENUE_PER_CONVERSION = 50 # $50 per conversion data['impressions'] = data['audience_size_lower_bound'] * IMPRESSION_RATE data['clicks'] = data['impressions'] * CTR data['conversions'] = data['clicks'] * CONVERSION_RATE data['ad_spend'] = (data['impressions'] / 1000) * CPM data['revenue'] = data['conversions'] * REVENUE_PER_CONVERSION data['roi'] = (data['revenue'] - data['ad_spend']) / data['ad_spend'] return data @app.route('/predict', methods=['GET']) def predict(): try: # Get user input from query parameters query = request.args.get('q', default='Fitness') # Default query is 'Fitness' geo_locations = request.args.get('geo_locations', default='NG') # Default country is 'NG' # Fetch data from Facebook API response_data = fetch_data_from_api(query, geo_locations) # Extract the list of dictionaries from the "data" key if "data" in response_data and isinstance(response_data["data"], list): data = pd.DataFrame(response_data["data"]) # Generate synthetic metrics data = generate_synthetic_metrics(data) # Use the first row of the data for prediction input_data = data.iloc[0][['ad_spend', 'impressions', 'clicks', 'conversions']] # Predict ROI predicted_roi = model.predict([input_data]) # Return the prediction return jsonify({ "ad_spend": input_data['ad_spend'], "impressions": input_data['impressions'], "clicks": input_data['clicks'], "conversions": input_data['conversions'], "predicted_roi": float(predicted_roi[0]), "note": "These are recommendations based on real-world data. Actual results may vary." }) else: return jsonify({"error": "The 'data' key is missing or not a list in the API response."}), 400 except Exception as e: return jsonify({"error": str(e)}), 500 if __name__ == '__main__': app.run(host='0.0.0.0', port=7860)