Update app.py
Browse files
app.py
CHANGED
@@ -1,51 +1,79 @@
|
|
1 |
-
from fastapi import FastAPI,
|
|
|
|
|
2 |
from pydantic import BaseModel
|
3 |
-
from
|
4 |
-
import torch
|
5 |
-
import numpy as np
|
6 |
-
import io
|
7 |
-
from scipy.io.wavfile import write
|
8 |
-
from PIL import Image
|
9 |
-
import riffusion
|
10 |
|
11 |
app = FastAPI()
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
try:
|
27 |
-
|
28 |
-
|
29 |
-
spectrogram = model.generate(**inputs)
|
30 |
-
|
31 |
-
# Convert spectrogram to an image (since Riffusion outputs spectrograms)
|
32 |
-
spectrogram_image = Image.fromarray((spectrogram.cpu().numpy().squeeze() * 255).astype(np.uint8))
|
33 |
-
|
34 |
-
# Convert spectrogram to audio
|
35 |
-
audio_values, sampling_rate = riffusion.audio_processing.spectrogram_to_audio(spectrogram_image)
|
36 |
-
|
37 |
-
# Normalize and convert to int16
|
38 |
-
audio_values = np.clip(audio_values * 32767, -32768, 32767).astype(np.int16)
|
39 |
-
|
40 |
-
# Convert to WAV format
|
41 |
-
audio_bytes = io.BytesIO()
|
42 |
-
write(audio_bytes, sampling_rate, audio_values)
|
43 |
-
audio_bytes.seek(0)
|
44 |
-
|
45 |
-
return Response(content=audio_bytes.read(), media_type="audio/wav", headers={"Content-Disposition": "attachment; filename=generated_music.wav"})
|
46 |
except Exception as e:
|
47 |
raise HTTPException(status_code=500, detail=str(e))
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
@app.get("/")
|
50 |
-
def root():
|
51 |
-
return {"message": "Welcome to the
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
2 |
+
import requests
|
3 |
+
import base64
|
4 |
from pydantic import BaseModel
|
5 |
+
from typing import Optional
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
app = FastAPI()
|
8 |
|
9 |
+
# NVIDIA API endpoint and API key
|
10 |
+
NVIDIA_API_URL = "https://ai.api.nvidia.com/v1/gr/meta/llama-3.2-90b-vision-instruct/chat/completions"
|
11 |
+
API_KEY = "your_nvidia_api_key_here" # Replace with your actual API key
|
|
|
12 |
|
13 |
+
# Request model for text-based input
|
14 |
+
class TextRequest(BaseModel):
|
15 |
+
message: str
|
16 |
+
max_tokens: Optional[int] = 512
|
17 |
+
temperature: Optional[float] = 1.0
|
18 |
+
top_p: Optional[float] = 1.0
|
19 |
|
20 |
+
# Function to call the NVIDIA API
|
21 |
+
def call_nvidia_api(payload: dict):
|
22 |
+
headers = {
|
23 |
+
"Authorization": f"Bearer {API_KEY}",
|
24 |
+
"Accept": "application/json",
|
25 |
+
}
|
26 |
+
response = requests.post(NVIDIA_API_URL, headers=headers, json=payload)
|
27 |
+
if response.status_code != 200:
|
28 |
+
raise HTTPException(status_code=response.status_code, detail="NVIDIA API request failed")
|
29 |
+
return response.json()
|
30 |
|
31 |
+
# Endpoint for text-based input
|
32 |
+
@app.post("/chat/text")
|
33 |
+
async def chat_with_text(request: TextRequest):
|
34 |
+
payload = {
|
35 |
+
"model": "meta/llama-3.2-90b-vision-instruct",
|
36 |
+
"messages": [{"role": "user", "content": request.message}],
|
37 |
+
"max_tokens": request.max_tokens,
|
38 |
+
"temperature": request.temperature,
|
39 |
+
"top_p": request.top_p,
|
40 |
+
"stream": False,
|
41 |
+
}
|
42 |
try:
|
43 |
+
response = call_nvidia_api(payload)
|
44 |
+
return {"response": response["choices"][0]["message"]["content"]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
except Exception as e:
|
46 |
raise HTTPException(status_code=500, detail=str(e))
|
47 |
|
48 |
+
# Endpoint for image-based input
|
49 |
+
@app.post("/chat/image")
|
50 |
+
async def chat_with_image(file: UploadFile = File(...)):
|
51 |
+
# Read and encode the image file to base64
|
52 |
+
image_data = await file.read()
|
53 |
+
base64_image = base64.b64encode(image_data).decode("utf-8")
|
54 |
+
|
55 |
+
# Prepare the payload for the NVIDIA API
|
56 |
+
payload = {
|
57 |
+
"model": "meta/llama-3.2-90b-vision-instruct",
|
58 |
+
"messages": [
|
59 |
+
{
|
60 |
+
"role": "user",
|
61 |
+
"content": f'What is in this image? <img src="data:image/png;base64,{base64_image}" />',
|
62 |
+
}
|
63 |
+
],
|
64 |
+
"max_tokens": 512,
|
65 |
+
"temperature": 1.0,
|
66 |
+
"top_p": 1.0,
|
67 |
+
"stream": False,
|
68 |
+
}
|
69 |
+
|
70 |
+
try:
|
71 |
+
response = call_nvidia_api(payload)
|
72 |
+
return {"response": response["choices"][0]["message"]["content"]}
|
73 |
+
except Exception as e:
|
74 |
+
raise HTTPException(status_code=500, detail=str(e))
|
75 |
+
|
76 |
+
# Root endpoint
|
77 |
@app.get("/")
|
78 |
+
async def root():
|
79 |
+
return {"message": "Welcome to the NVIDIA API FastAPI wrapper!"}
|