|
|
|
import os |
|
import time |
|
import requests |
|
import base64 |
|
from datetime import datetime |
|
from bs4 import BeautifulSoup |
|
|
|
from fastapi import FastAPI, Request, HTTPException, BackgroundTasks, UploadFile, File |
|
from fastapi.responses import JSONResponse, StreamingResponse |
|
|
|
import openai |
|
|
|
from sqlalchemy.ext.asyncio import create_async_engine, AsyncSession |
|
from sqlalchemy.orm import sessionmaker, declarative_base |
|
from sqlalchemy import Column, Integer, String, DateTime, Text |
|
|
|
|
|
SPOONACULAR_API_KEY = os.getenv("SPOONACULAR_API_KEY", "815bf76e0764456293f0e96e080e8f60") |
|
PAYSTACK_SECRET_KEY = os.getenv("PAYSTACK_SECRET_KEY", "pk_test_3222fb257041f1f2fd5ef33eafd19e1db4bdb634") |
|
DATABASE_URL = os.getenv("DATABASE_URL", "postgresql+asyncpg://postgres.lgbnxplydqdymepehirg:[email protected]:5432/postgres") |
|
NVIDIA_API_KEY = os.getenv("NVIDIA_API_KEY", "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") |
|
|
|
openai.api_key = os.getenv("OPENAI_API_KEY", "your_openai_api_key") |
|
|
|
|
|
Base = declarative_base() |
|
|
|
class ChatHistory(Base): |
|
__tablename__ = "chat_history" |
|
id = Column(Integer, primary_key=True, index=True) |
|
user_id = Column(String, index=True) |
|
timestamp = Column(DateTime, default=datetime.utcnow) |
|
direction = Column(String) |
|
message = Column(Text) |
|
|
|
class Order(Base): |
|
__tablename__ = "orders" |
|
id = Column(Integer, primary_key=True, index=True) |
|
order_id = Column(String, unique=True, index=True) |
|
user_id = Column(String, index=True) |
|
dish = Column(String) |
|
quantity = Column(String) |
|
price = Column(String, default="0") |
|
status = Column(String, default="Pending Payment") |
|
payment_reference = Column(String, nullable=True) |
|
timestamp = Column(DateTime, default=datetime.utcnow) |
|
|
|
|
|
engine = create_async_engine(DATABASE_URL, echo=True) |
|
async_session = sessionmaker(engine, class_=AsyncSession, expire_on_commit=False) |
|
|
|
async def init_db(): |
|
async with engine.begin() as conn: |
|
await conn.run_sync(Base.metadata.create_all) |
|
|
|
|
|
user_state = {} |
|
|
|
|
|
menu_items = [ |
|
{"name": "Jollof Rice", "description": "A spicy and flavorful rice dish", "price": 1500, "nutrition": "Calories: 300 kcal, Carbs: 50g, Protein: 10g, Fat: 5g"}, |
|
{"name": "Fried Rice", "description": "A savory rice dish with vegetables and meat", "price": 1200, "nutrition": "Calories: 350 kcal, Carbs: 55g, Protein: 12g, Fat: 8g"}, |
|
{"name": "Chicken Wings", "description": "Crispy fried chicken wings", "price": 2000, "nutrition": "Calories: 400 kcal, Carbs: 20g, Protein: 25g, Fat: 15g"}, |
|
{"name": "Egusi Soup", "description": "A rich and hearty soup made with melon seeds", "price": 1000, "nutrition": "Calories: 250 kcal, Carbs: 15g, Protein: 8g, Fat: 10g"} |
|
] |
|
|
|
|
|
|
|
async def log_chat_to_db(user_id: str, direction: str, message: str): |
|
"""Store chat messages into the database asynchronously.""" |
|
async with async_session() as session: |
|
entry = ChatHistory(user_id=user_id, direction=direction, message=message) |
|
session.add(entry) |
|
await session.commit() |
|
|
|
def google_image_scrape(query: str) -> str: |
|
""" |
|
Scrape Google Images using BeautifulSoup to get an image URL for the query. |
|
Note: This basic scraper may break if Google changes its markup. |
|
""" |
|
headers = { |
|
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64)" |
|
} |
|
search_url = f"https://www.google.com/search?tbm=isch&q={query}" |
|
try: |
|
response = requests.get(search_url, headers=headers, timeout=5) |
|
except Exception: |
|
return "" |
|
if response.status_code == 200: |
|
soup = BeautifulSoup(response.text, "html.parser") |
|
img_tags = soup.find_all("img") |
|
for img in img_tags: |
|
src = img.get("src") |
|
if src and src.startswith("http"): |
|
return src |
|
return "" |
|
|
|
def create_paystack_payment_link(email: str, amount: int, reference: str) -> dict: |
|
""" |
|
Call Paystack to initialize a transaction. |
|
- email: customer's email |
|
- amount: in kobo (multiply NGN amount by 100) |
|
- reference: unique order reference |
|
Returns a dict with the payment link and status. |
|
""" |
|
url = "https://api.paystack.co/transaction/initialize" |
|
headers = { |
|
"Authorization": f"Bearer {PAYSTACK_SECRET_KEY}", |
|
"Content-Type": "application/json", |
|
} |
|
data = { |
|
"email": email, |
|
"amount": amount, |
|
"reference": reference, |
|
"callback_url": "https://yourdomain.com/payment_callback" |
|
} |
|
try: |
|
response = requests.post(url, json=data, headers=headers, timeout=10) |
|
if response.status_code == 200: |
|
return response.json() |
|
else: |
|
return {"status": False, "message": "Failed to initialize payment."} |
|
except Exception as e: |
|
return {"status": False, "message": str(e)} |
|
|
|
|
|
|
|
def stream_text_completion(prompt: str): |
|
""" |
|
Stream text completion using NVIDIA's text-only model. |
|
Uses the OpenAI client interface pointed to NVIDIA's endpoint. |
|
""" |
|
from openai import OpenAI |
|
client = OpenAI( |
|
base_url="https://integrate.api.nvidia.com/v1", |
|
api_key=NVIDIA_API_KEY |
|
) |
|
completion = client.chat.completions.create( |
|
model="meta/llama-3.1-405b-instruct", |
|
messages=[{"role": "user", "content": prompt}], |
|
temperature=0.2, |
|
top_p=0.7, |
|
max_tokens=1024, |
|
stream=True |
|
) |
|
for chunk in completion: |
|
if chunk.choices[0].delta.content is not None: |
|
yield chunk.choices[0].delta.content |
|
|
|
def stream_image_completion(image_b64: str): |
|
""" |
|
Stream image-based query using NVIDIA's vision model. |
|
The image (in base64) is embedded in an HTML <img> tag. |
|
""" |
|
invoke_url = "https://ai.api.nvidia.com/v1/gr/meta/llama-3.2-90b-vision-instruct/chat/completions" |
|
headers = { |
|
"Authorization": f"Bearer {NVIDIA_API_KEY}", |
|
"Accept": "text/event-stream" |
|
} |
|
payload = { |
|
"model": "meta/llama-3.2-90b-vision-instruct", |
|
"messages": [ |
|
{ |
|
"role": "user", |
|
"content": f'What is in this image? <img src="data:image/png;base64,{image_b64}" />' |
|
} |
|
], |
|
"max_tokens": 512, |
|
"temperature": 1.00, |
|
"top_p": 1.00, |
|
"stream": True |
|
} |
|
response = requests.post(invoke_url, headers=headers, json=payload, stream=True) |
|
for line in response.iter_lines(): |
|
if line: |
|
yield line.decode("utf-8") + "\n" |
|
|
|
|
|
def process_internal_flow(user_id: str, message: str) -> str: |
|
""" |
|
A simple two-step order flow: |
|
- Step 1: Ask for dish. |
|
- Step 2: Ask for quantity. |
|
After collecting these details, the order is saved and a payment link is generated. |
|
""" |
|
if user_id in user_state: |
|
state = user_state[user_id] |
|
flow = state.get("flow") |
|
step = state.get("step") |
|
data = state.get("data", {}) |
|
if flow == "order": |
|
if step == 1: |
|
data["dish"] = message.title() |
|
state["step"] = 2 |
|
return f"You selected {data['dish']}. How many servings would you like?" |
|
elif step == 2: |
|
data["quantity"] = message |
|
order_id = f"ORD-{int(time.time())}" |
|
data["order_id"] = order_id |
|
|
|
price_per_serving = 1500 |
|
total_price = int(data["quantity"]) * price_per_serving |
|
data["price"] = str(total_price) |
|
|
|
import asyncio |
|
async def save_order(): |
|
async with async_session() as session: |
|
order = Order( |
|
order_id=order_id, |
|
user_id=user_id, |
|
dish=data["dish"], |
|
quantity=data["quantity"], |
|
price=str(total_price), |
|
status="Pending Payment" |
|
) |
|
session.add(order) |
|
await session.commit() |
|
asyncio.create_task(save_order()) |
|
|
|
del user_state[user_id] |
|
|
|
email = "[email protected]" |
|
payment_data = create_paystack_payment_link(email, total_price * 100, order_id) |
|
if payment_data.get("status"): |
|
payment_link = payment_data["data"]["authorization_url"] |
|
return (f"Thank you for your order of {data['quantity']} serving(s) of {data['dish']}! " |
|
f"Your Order ID is {order_id}.\nPlease complete payment here: {payment_link}") |
|
else: |
|
return f"Your order has been placed with Order ID {order_id}, but we could not initialize payment. Please try again later." |
|
else: |
|
if "order" in message.lower(): |
|
user_state[user_id] = {"flow": "order", "step": 1, "data": {}} |
|
return "Sure! What dish would you like to order?" |
|
return "" |
|
|
|
|
|
app = FastAPI() |
|
|
|
@app.on_event("startup") |
|
async def on_startup(): |
|
await init_db() |
|
|
|
@app.post("/chatbot") |
|
async def chatbot_response(request: Request, background_tasks: BackgroundTasks): |
|
""" |
|
Main chatbot endpoint. |
|
Expects a JSON payload with: |
|
- 'user_id' |
|
- 'message' (text query) |
|
- Optionally, 'is_image': true and 'image_base64': <base64 string> for image queries. |
|
Streaming responses will be returned. |
|
""" |
|
data = await request.json() |
|
user_id = data.get("user_id") |
|
user_message = data.get("message", "").strip() |
|
is_image = data.get("is_image", False) |
|
image_b64 = data.get("image_base64", None) |
|
|
|
if not user_id: |
|
raise HTTPException(status_code=400, detail="Missing user_id in payload.") |
|
|
|
|
|
if user_message: |
|
background_tasks.add_task(log_chat_to_db, user_id, "inbound", user_message) |
|
if is_image and image_b64 is None: |
|
raise HTTPException(status_code=400, detail="is_image is true but no image_base64 provided.") |
|
|
|
|
|
if is_image and image_b64: |
|
|
|
if len(image_b64) >= 180_000: |
|
raise HTTPException(status_code=400, detail="Image too large. Use a smaller image or the assets API.") |
|
|
|
return StreamingResponse(stream_image_completion(image_b64), media_type="text/plain") |
|
|
|
|
|
if "menu" in user_message.lower(): |
|
menu_with_images = [] |
|
for item in menu_items: |
|
image_url = google_image_scrape(item["name"]) |
|
menu_with_images.append({"name": item["name"], "description": item["description"], "price": item["price"], "image_url": image_url}) |
|
response_payload = { |
|
"response": "Here’s our delicious menu:", |
|
"menu": menu_with_images, |
|
"follow_up": ("Would you like to see nutritional facts for any dish? " |
|
"Just type, for example, 'Nutritional facts for Jollof Rice'.") |
|
} |
|
background_tasks.add_task(log_chat_to_db, user_id, "outbound", str(response_payload)) |
|
return JSONResponse(content=response_payload) |
|
|
|
if "nutritional facts for" in user_message.lower(): |
|
dish_name = user_message.lower().replace("nutritional facts for", "").strip().title() |
|
dish = next((item for item in menu_items if item["name"].lower() == dish_name.lower()), None) |
|
if dish: |
|
response_text = f"Nutritional facts for {dish['name']}:\n{dish['nutrition']}" |
|
else: |
|
response_text = f"Sorry, I couldn't find nutritional facts for {dish_name}." |
|
background_tasks.add_task(log_chat_to_db, user_id, "outbound", response_text) |
|
return JSONResponse(content={"response": response_text}) |
|
|
|
internal_response = process_internal_flow(user_id, user_message) |
|
if internal_response: |
|
background_tasks.add_task(log_chat_to_db, user_id, "outbound", internal_response) |
|
return JSONResponse(content={"response": internal_response}) |
|
|
|
|
|
prompt = f"User query: {user_message}\nGenerate a helpful response for a restaurant chatbot." |
|
|
|
|
|
def stream_response(): |
|
for chunk in stream_text_completion(prompt): |
|
yield chunk |
|
|
|
background_tasks.add_task(log_chat_to_db, user_id, "outbound", f"LLM fallback response for prompt: {prompt}") |
|
return StreamingResponse(stream_response(), media_type="text/plain") |
|
|
|
@app.get("/chat_history/{user_id}") |
|
async def get_chat_history(user_id: str): |
|
""" |
|
Retrieve the chat history for a given user from the database. |
|
""" |
|
async with async_session() as session: |
|
result = await session.execute( |
|
ChatHistory.__table__.select().where(ChatHistory.user_id == user_id) |
|
) |
|
history = result.fetchall() |
|
return [dict(row) for row in history] |
|
|
|
@app.get("/order/{order_id}") |
|
async def get_order(order_id: str): |
|
""" |
|
Retrieve details for a specific order from the database. |
|
""" |
|
async with async_session() as session: |
|
result = await session.execute( |
|
Order.__table__.select().where(Order.order_id == order_id) |
|
) |
|
order = result.fetchone() |
|
if order: |
|
return dict(order) |
|
else: |
|
raise HTTPException(status_code=404, detail="Order not found.") |
|
|
|
if __name__ == "__main__": |
|
import uvicorn |
|
uvicorn.run(app, host="0.0.0.0", port=8000) |