Update app.py
Browse files
app.py
CHANGED
@@ -2,12 +2,17 @@ from fastapi import FastAPI, HTTPException
|
|
2 |
from pydantic import BaseModel
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
4 |
import torch
|
|
|
5 |
|
6 |
# Initialize FastAPI app
|
7 |
app = FastAPI()
|
8 |
|
9 |
-
#
|
10 |
-
|
|
|
|
|
|
|
|
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
12 |
|
13 |
# Check if CUDA is available
|
@@ -15,16 +20,16 @@ if torch.cuda.is_available():
|
|
15 |
# Load the model with 8-bit quantization for GPU
|
16 |
model = AutoModelForCausalLM.from_pretrained(
|
17 |
model_id,
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
)
|
22 |
else:
|
23 |
# Fallback to CPU or full precision
|
24 |
model = AutoModelForCausalLM.from_pretrained(
|
25 |
model_id,
|
26 |
-
|
27 |
-
|
28 |
)
|
29 |
|
30 |
# Create a text generation pipeline
|
@@ -43,7 +48,7 @@ class TextGenerationRequest(BaseModel):
|
|
43 |
@app.post("/generate-text")
|
44 |
async def generate_text(request: TextGenerationRequest):
|
45 |
try:
|
46 |
-
|
47 |
outputs = pipe(
|
48 |
request.prompt,
|
49 |
max_new_tokens=request.max_new_tokens,
|
@@ -54,6 +59,7 @@ async def generate_text(request: TextGenerationRequest):
|
|
54 |
)
|
55 |
return {"generated_text": outputs[0]["generated_text"]}
|
56 |
except Exception as e:
|
|
|
57 |
raise HTTPException(status_code=500, detail=str(e))
|
58 |
|
59 |
# Add a root endpoint for health checks
|
|
|
2 |
from pydantic import BaseModel
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
4 |
import torch
|
5 |
+
import logging
|
6 |
|
7 |
# Initialize FastAPI app
|
8 |
app = FastAPI()
|
9 |
|
10 |
+
# Set up logging
|
11 |
+
logging.basicConfig(level=logging.INFO)
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
# Load the Falcon-7B model with 8-bit quantization (if CUDA is available)
|
15 |
+
model_id = "tiiuae/falcon-7b-instruct"
|
16 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
17 |
|
18 |
# Check if CUDA is available
|
|
|
20 |
# Load the model with 8-bit quantization for GPU
|
21 |
model = AutoModelForCausalLM.from_pretrained(
|
22 |
model_id,
|
23 |
+
revision="main", # Pin to a specific revision
|
24 |
+
load_in_8bit=True,
|
25 |
+
device_map="auto"
|
26 |
)
|
27 |
else:
|
28 |
# Fallback to CPU or full precision
|
29 |
model = AutoModelForCausalLM.from_pretrained(
|
30 |
model_id,
|
31 |
+
revision="main", # Pin to a specific revision
|
32 |
+
device_map="auto"
|
33 |
)
|
34 |
|
35 |
# Create a text generation pipeline
|
|
|
48 |
@app.post("/generate-text")
|
49 |
async def generate_text(request: TextGenerationRequest):
|
50 |
try:
|
51 |
+
logger.info("Generating text...")
|
52 |
outputs = pipe(
|
53 |
request.prompt,
|
54 |
max_new_tokens=request.max_new_tokens,
|
|
|
59 |
)
|
60 |
return {"generated_text": outputs[0]["generated_text"]}
|
61 |
except Exception as e:
|
62 |
+
logger.error(f"Error generating text: {e}")
|
63 |
raise HTTPException(status_code=500, detail=str(e))
|
64 |
|
65 |
# Add a root endpoint for health checks
|