Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
-
|
4 |
-
from huggingface_hub import login
|
5 |
import os
|
6 |
-
import torch
|
7 |
import logging
|
8 |
|
9 |
# Read the Hugging Face token from the environment variable
|
@@ -11,9 +9,6 @@ token = os.getenv("HUGGING_FACE_HUB_TOKEN")
|
|
11 |
if token is None:
|
12 |
raise ValueError("Hugging Face token not found in environment variables. Please set the HUGGING_FACE_HUB_TOKEN secret in Hugging Face Spaces.")
|
13 |
|
14 |
-
# Log in with the token
|
15 |
-
login(token=token)
|
16 |
-
|
17 |
# Initialize FastAPI app
|
18 |
app = FastAPI()
|
19 |
|
@@ -21,28 +16,9 @@ app = FastAPI()
|
|
21 |
logging.basicConfig(level=logging.INFO)
|
22 |
logger = logging.getLogger(__name__)
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
# Set pad_token if it doesn't exist
|
29 |
-
if tokenizer.pad_token is None:
|
30 |
-
tokenizer.pad_token = tokenizer.eos_token # Use eos_token as pad_token
|
31 |
-
|
32 |
-
# Load the model without quantization for CPU
|
33 |
-
logger.info("Loading model...")
|
34 |
-
model = AutoModelForCausalLM.from_pretrained(
|
35 |
-
model_id,
|
36 |
-
torch_dtype=torch.float32, # Use FP32 for CPU compatibility
|
37 |
-
device_map="auto" # Automatically offload to available devices
|
38 |
-
)
|
39 |
-
|
40 |
-
# Create a text generation pipeline
|
41 |
-
pipe = pipeline(
|
42 |
-
"text-generation",
|
43 |
-
model=model,
|
44 |
-
tokenizer=tokenizer
|
45 |
-
)
|
46 |
|
47 |
# Define request body schema
|
48 |
class TextGenerationRequest(BaseModel):
|
@@ -59,17 +35,25 @@ async def generate_text(request: TextGenerationRequest):
|
|
59 |
try:
|
60 |
logger.info("Generating text...")
|
61 |
|
62 |
-
#
|
63 |
-
|
64 |
-
request.prompt,
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
except Exception as e:
|
74 |
logger.error(f"Error generating text: {e}")
|
75 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
+
import requests
|
|
|
4 |
import os
|
|
|
5 |
import logging
|
6 |
|
7 |
# Read the Hugging Face token from the environment variable
|
|
|
9 |
if token is None:
|
10 |
raise ValueError("Hugging Face token not found in environment variables. Please set the HUGGING_FACE_HUB_TOKEN secret in Hugging Face Spaces.")
|
11 |
|
|
|
|
|
|
|
12 |
# Initialize FastAPI app
|
13 |
app = FastAPI()
|
14 |
|
|
|
16 |
logging.basicConfig(level=logging.INFO)
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
19 |
+
# Hugging Face Inference API endpoint for BLOOM-7B
|
20 |
+
API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom-7b1" # Use BLOOM-7B
|
21 |
+
headers = {"Authorization": f"Bearer {token}"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
# Define request body schema
|
24 |
class TextGenerationRequest(BaseModel):
|
|
|
35 |
try:
|
36 |
logger.info("Generating text...")
|
37 |
|
38 |
+
# Prepare the payload for the Hugging Face Inference API
|
39 |
+
payload = {
|
40 |
+
"inputs": request.prompt,
|
41 |
+
"parameters": {
|
42 |
+
"max_new_tokens": request.max_new_tokens,
|
43 |
+
"temperature": request.temperature,
|
44 |
+
"top_k": request.top_k,
|
45 |
+
"top_p": request.top_p,
|
46 |
+
"do_sample": request.do_sample,
|
47 |
+
},
|
48 |
+
}
|
49 |
+
|
50 |
+
# Send request to the Hugging Face Inference API
|
51 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
52 |
+
response.raise_for_status() # Raise an error for bad responses (4xx or 5xx)
|
53 |
+
|
54 |
+
# Extract the generated text from the response
|
55 |
+
generated_text = response.json()[0]["generated_text"]
|
56 |
+
return {"generated_text": generated_text}
|
57 |
except Exception as e:
|
58 |
logger.error(f"Error generating text: {e}")
|
59 |
raise HTTPException(status_code=500, detail=str(e))
|