808-GPT2 / app.py
Fred808's picture
Update app.py
4c64189 verified
raw
history blame
2.03 kB
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
import logging
# Initialize FastAPI app
app = FastAPI()
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Load the GPT-2 model and tokenizer
model_id = "gpt2" # Use GPT-2
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
# Create a text generation pipeline
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
# Define the pre-prompt
PRE_PROMPT = "You are a helpful virtual assistant. Answer the user's question clearly and concisely."
# Define request body schema
class TextGenerationRequest(BaseModel):
prompt: str
max_new_tokens: int = 50 # Reduce this for faster responses
temperature: float = 0.7 # Lower for more deterministic outputs
top_k: int = 50
top_p: float = 0.9
do_sample: bool = True
# Define API endpoint
@app.post("/generate-text")
async def generate_text(request: TextGenerationRequest):
try:
logger.info("Generating text...")
# Combine the pre-prompt and user's prompt
combined_input = f"{PRE_PROMPT} {request.prompt}"
# Generate text using the pipeline
outputs = pipe(
combined_input, # Use the combined input
max_new_tokens=request.max_new_tokens,
temperature=request.temperature,
top_k=request.top_k,
top_p=request.top_p,
do_sample=request.do_sample,
return_full_text=False # Exclude the input prompt from the output
)
return {"generated_text": outputs[0]["generated_text"]}
except Exception as e:
logger.error(f"Error generating text: {e}")
raise HTTPException(status_code=500, detail=str(e))
# Add a root endpoint for health checks
@app.get("/test")
async def root():
return {"message": "API is running!"}