Fecalisboa commited on
Commit
217ade3
·
verified ·
1 Parent(s): 802f2b8

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -326
app.py DELETED
@@ -1,326 +0,0 @@
1
- import gradio as gr
2
- import os
3
- from pathlib import Path
4
- import re
5
- from unidecode import unidecode
6
- import chromadb
7
- from langchain_community.vectorstores import FAISS, ScaNN, Milvus
8
- from langchain_community.document_loaders import PyPDFLoader
9
- from langchain.text_splitter import RecursiveCharacterTextSplitter
10
- from langchain_community.vectorstores import Chroma
11
- from langchain.chains import ConversationalRetrievalChain
12
- from langchain_community.embeddings import HuggingFaceEmbeddings
13
- from langchain_community.llms import HuggingFacePipeline
14
- from langchain.chains import ConversationChain
15
- from langchain.memory import ConversationBufferMemory
16
- from langchain_community.llms import HuggingFaceEndpoint
17
- import torch
18
-
19
- api_token = os.getenv("HF_TOKEN")
20
-
21
- list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.3"]
22
- list_llm_simple = [os.path.basename(llm) for llm in list_llm]
23
-
24
- # Load PDF document and create doc splits
25
- def load_doc(list_file_path, chunk_size, chunk_overlap):
26
- loaders = [PyPDFLoader(x) for x in list_file_path]
27
- pages = []
28
- for loader in loaders:
29
- pages.extend(loader.load())
30
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
31
- doc_splits = text_splitter.split_documents(pages)
32
- return doc_splits
33
-
34
- # Create vector database
35
- def create_db(splits, collection_name, db_type):
36
- embedding = HuggingFaceEmbeddings()
37
-
38
- if db_type == "ChromaDB":
39
- new_client = chromadb.EphemeralClient()
40
- vectordb = Chroma.from_documents(
41
- documents=splits,
42
- embedding=embedding,
43
- client=new_client,
44
- collection_name=collection_name,
45
- )
46
- elif db_type == "FAISS":
47
- vectordb = FAISS.from_documents(
48
- documents=splits,
49
- embedding=embedding
50
- )
51
- elif db_type == "ScaNN":
52
- vectordb = ScaNN.from_documents(
53
- documents=splits,
54
- embedding=embedding
55
- )
56
- elif db_type == "Milvus":
57
- vectordb = Milvus.from_documents(
58
- documents=splits,
59
- embedding=embedding,
60
- collection_name=collection_name,
61
- )
62
- else:
63
- raise ValueError(f"Unsupported vector database type: {db_type}")
64
-
65
- return vectordb
66
-
67
- # Initialize langchain LLM chain
68
- def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, initial_prompt, progress=gr.Progress()):
69
- progress(0.1, desc="Initializing HF tokenizer...")
70
-
71
- progress(0.5, desc="Initializing HF Hub...")
72
-
73
- llm = HuggingFaceEndpoint(
74
- repo_id=llm_model,
75
- huggingfacehub_api_token=api_token,
76
- temperature=temperature,
77
- max_new_tokens=max_tokens,
78
- top_k=top_k,
79
- )
80
-
81
- progress(0.75, desc="Defining buffer memory...")
82
- memory = ConversationBufferMemory(
83
- memory_key="chat_history",
84
- output_key='answer',
85
- return_messages=True
86
- )
87
- retriever = vector_db.as_retriever()
88
- progress(0.8, desc="Defining retrieval chain...")
89
- qa_chain = ConversationalRetrievalChain.from_llm(
90
- llm,
91
- retriever=retriever,
92
- chain_type="stuff",
93
- memory=memory,
94
- return_source_documents=True,
95
- verbose=False,
96
- )
97
- qa_chain({"question": initial_prompt}) # Initialize with the initial prompt
98
- progress(0.9, desc="Done!")
99
- return qa_chain
100
-
101
- def initialize_llm_no_doc(llm_model, temperature, max_tokens, top_k, initial_prompt, progress=gr.Progress()):
102
- progress(0.1, desc="Initializing HF tokenizer...")
103
- progress(0.5, desc="Initializing HF Hub...")
104
- llm = HuggingFaceEndpoint(
105
- repo_id=llm_model,
106
- huggingfacehub_api_token=api_token,
107
- temperature=temperature,
108
- max_new_tokens=max_tokens,
109
- top_k=top_k,
110
- )
111
- progress(0.75, desc="Defining buffer memory...")
112
- memory = ConversationBufferMemory(
113
- memory_key="chat_history",
114
- output_key='answer',
115
- return_messages=True
116
- )
117
- conversation_chain = ConversationChain(llm=llm, memory=memory, verbose=False)
118
- conversation_chain({"question": initial_prompt})
119
- progress(0.9, desc="Done!")
120
- return conversation_chain
121
-
122
- def format_chat_history(message, chat_history):
123
- formatted_chat_history = []
124
- for user_message, bot_message in chat_history:
125
- formatted_chat_history.append(f"User: {user_message}")
126
- formatted_chat_history.append(f"Assistant: {bot_message}")
127
- return formatted_chat_history
128
-
129
- def conversation(qa_chain, message, history):
130
- formatted_chat_history = format_chat_history(message, history)
131
- response = qa_chain({"question": message, "chat_history": formatted_chat_history})
132
- response_answer = response["answer"]
133
- if "Helpful Answer:" in response_answer:
134
- response_answer = response_answer.split("Helpful Answer:")[-1]
135
- response_sources = response["source_documents"]
136
- response_source1 = response_sources[0].page_content.strip()
137
- response_source2 = response_sources[1].page_content.strip()
138
- response_source3 = response_sources[2].page_content.strip()
139
- response_source1_page = response_sources[0].metadata["page"] + 1
140
- response_source2_page = response_sources[1].metadata["page"] + 1
141
- response_source3_page = response_sources[2].metadata["page"] + 1
142
-
143
- new_history = history + [(message, response_answer)]
144
- return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
145
-
146
- def conversation_no_doc(llm, message, history):
147
- formatted_chat_history = format_chat_history(message, history)
148
- response = llm({"question": message, "chat_history": formatted_chat_history})
149
- response_answer = response["answer"]
150
- new_history = history + [(message, response_answer)]
151
- return llm, gr.update(value=""), new_history
152
-
153
- def upload_file(file_obj):
154
- list_file_path = []
155
- for file in file_obj:
156
- list_file_path.append(file.name)
157
- return list_file_path
158
-
159
- def initialize_database(list_file_obj, chunk_size, chunk_overlap, db_type, progress=gr.Progress()):
160
- list_file_path = [x.name for x in list_file_obj if x is not None]
161
- progress(0.1, desc="Creating collection name...")
162
- collection_name = create_collection_name(list_file_path[0])
163
- progress(0.25, desc="Loading document...")
164
- doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
165
- progress(0.5, desc="Generating vector database...")
166
- vector_db = create_db(doc_splits, collection_name, db_type)
167
- progress(0.9, desc="Done!")
168
- return vector_db, collection_name, "Complete!"
169
-
170
- def create_collection_name(filepath):
171
- collection_name = Path(filepath).stem
172
- collection_name = collection_name.replace(" ", "-")
173
- collection_name = unidecode(collection_name)
174
- collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
175
- collection_name = collection_name[:50]
176
- if len(collection_name) < 3:
177
- collection_name = collection_name + 'xyz'
178
- if not collection_name[0].isalnum():
179
- collection_name = 'A' + collection_name[1:]
180
- if not collection_name[-1].isalnum():
181
- collection_name = collection_name[:-1] + 'Z'
182
- print('Filepath: ', filepath)
183
- print('Collection name: ', collection_name)
184
- return collection_name
185
-
186
- def demo():
187
- with gr.Blocks(theme="base") as demo:
188
- vector_db = gr.State()
189
- qa_chain = gr.State()
190
- collection_name = gr.State()
191
- initial_prompt = gr.State("")
192
- llm_no_doc = gr.State()
193
-
194
- gr.Markdown(
195
- """<center><h2>lucIAna</center></h2>
196
- <h3>Olá, sou a 2. versão</h3>""")
197
- gr.Markdown(
198
- """<b>Note:</b> Esta é a lucIAna, primeira Versão da IA para seus PDF documentos.
199
- Este chatbot leva em consideração perguntas anteriores ao gerar respostas (por meio de memória conversacional) e inclui referências a documentos para fins de clareza.
200
- """)
201
-
202
- with gr.Tab("Step 1 - Upload PDF"):
203
- with gr.Row():
204
- document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
205
-
206
- with gr.Tab("Step 2 - Process document"):
207
- with gr.Row():
208
- db_type_radio = gr.Radio(["ChromaDB", "FAISS", "ScaNN", "Milvus"], label="Vector database type", value="ChromaDB", type="value", info="Choose your vector database")
209
- with gr.Accordion("Advanced options - Document text splitter", open=False):
210
- with gr.Row():
211
- slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
212
- with gr.Row():
213
- slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
214
- with gr.Row():
215
- db_progress = gr.Textbox(label="Vector database initialization", value="None")
216
- with gr.Row():
217
- db_btn = gr.Button("Generate vector database")
218
-
219
- with gr.Tab("Step 3 - Set Initial Prompt"):
220
- with gr.Row():
221
- prompt_input = gr.Textbox(label="Initial Prompt", lines=5, value="Você é um advogado sênior, onde seu papel é analisar e trazer as informações sem inventar, dando a sua melhor opinião sempre trazendo contexto e referência. Aprenda o que é jurisprudência.")
222
- with gr.Row():
223
- set_prompt_btn = gr.Button("Set Prompt")
224
-
225
- with gr.Tab("Step 4 - Initialize QA chain"):
226
- with gr.Row():
227
- llm_btn = gr.Radio(list_llm_simple,
228
- label="LLM models", value=list_llm_simple[0], type="index", info="Choose your LLM model")
229
- with gr.Accordion("Advanced options - LLM model", open=False):
230
- with gr.Row():
231
- slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
232
- with gr.Row():
233
- slider_maxtokens = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
234
- with gr.Row():
235
- slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
236
- with gr.Row():
237
- llm_progress = gr.Textbox(value="None", label="QA chain initialization")
238
- with gr.Row():
239
- qachain_btn = gr.Button("Initialize Question Answering chain")
240
-
241
- with gr.Tab("Step 5 - Chatbot with document"):
242
- chatbot = gr.Chatbot(height=300)
243
- with gr.Accordion("Advanced - Document references", open=False):
244
- with gr.Row():
245
- doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
246
- source1_page = gr.Number(label="Page", scale=1)
247
- with gr.Row():
248
- doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
249
- source2_page = gr.Number(label="Page", scale=1)
250
- with gr.Row():
251
- doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
252
- source3_page = gr.Number(label="Page", scale=1)
253
- with gr.Row():
254
- msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True)
255
- with gr.Row():
256
- submit_btn = gr.Button("Submit message")
257
- clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
258
-
259
- with gr.Tab("Step 6 - Chatbot without document"):
260
- with gr.Row():
261
- llm_no_doc_btn = gr.Radio(list_llm_simple,
262
- label="LLM models", value=list_llm_simple[0], type="index", info="Choose your LLM model for chatbot without document")
263
- with gr.Accordion("Advanced options - LLM model", open=False):
264
- with gr.Row():
265
- slider_temperature_no_doc = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
266
- with gr.Row():
267
- slider_maxtokens_no_doc = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
268
- with gr.Row():
269
- slider_topk_no_doc = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
270
- with gr.Row():
271
- llm_no_doc_progress = gr.Textbox(value="None", label="LLM initialization for chatbot without document")
272
- with gr.Row():
273
- llm_no_doc_init_btn = gr.Button("Initialize LLM for Chatbot without document")
274
- chatbot_no_doc = gr.Chatbot(height=300)
275
- with gr.Row():
276
- msg_no_doc = gr.Textbox(placeholder="Type message to chat with lucIAna", container=True)
277
- with gr.Row():
278
- submit_btn_no_doc = gr.Button("Submit message")
279
- clear_btn_no_doc = gr.ClearButton([msg_no_doc, chatbot_no_doc], value="Clear conversation")
280
-
281
- # Preprocessing events
282
- db_btn.click(initialize_database,
283
- inputs=[document, slider_chunk_size, slider_chunk_overlap, db_type_radio],
284
- outputs=[vector_db, collection_name, db_progress])
285
- set_prompt_btn.click(lambda prompt: gr.update(value=prompt),
286
- inputs=prompt_input,
287
- outputs=initial_prompt)
288
- qachain_btn.click(initialize_llmchain,
289
- inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db, initial_prompt],
290
- outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0],
291
- inputs=None,
292
- outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
293
- queue=False)
294
-
295
- # Chatbot events with document
296
- msg.submit(conversation,
297
- inputs=[qa_chain, msg, chatbot],
298
- outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
299
- queue=False)
300
- submit_btn.click(conversation,
301
- inputs=[qa_chain, msg, chatbot],
302
- outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
303
- queue=False)
304
- clear_btn.click(lambda:[None,"",0,"",0,"",0],
305
- inputs=None,
306
- outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
307
- queue=False)
308
-
309
- # Initialize LLM without document for conversation
310
- llm_no_doc_init_btn.click(initialize_llm_no_doc,
311
- inputs=[llm_no_doc_btn, slider_temperature_no_doc, slider_maxtokens_no_doc, slider_topk_no_doc, initial_prompt],
312
- outputs=[llm_no_doc, llm_no_doc_progress])
313
-
314
- submit_btn_no_doc.click(conversation_no_doc,
315
- inputs=[llm_no_doc, msg_no_doc, chatbot_no_doc],
316
- outputs=[llm_no_doc, msg_no_doc, chatbot_no_doc],
317
- queue=False)
318
- clear_btn_no_doc.click(lambda:[None,""],
319
- inputs=None,
320
- outputs=[chatbot_no_doc, msg_no_doc],
321
- queue=False)
322
-
323
- demo.queue().launch(debug=True, share=True)
324
-
325
- if __name__ == "__main__":
326
- demo()