File size: 4,129 Bytes
3dfe804
 
e65baf8
 
15f9c7b
 
245457d
 
 
 
 
 
 
 
 
136d978
 
 
b3226b4
c8b0bc8
e0fa269
b3226b4
01eac72
 
 
 
 
b3226b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136d978
684fecf
 
b4d9ff9
684fecf
e65baf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
684fecf
 
136d978
 
e65baf8
684fecf
 
 
 
 
 
 
 
136d978
684fecf
 
 
13967af
b4d9ff9
13967af
684fecf
13967af
136d978
b303f65
920b8d5
b3226b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bc70f1
 
b3226b4
 
 
 
 
 
e0fa269
a06b2d0
b3226b4
e0fa269
 
 
 
245457d
920b8d5
 
684fecf
 
b8a68c2
136d978
e0fa269
0cef615
e0fa269
 
 
 
245457d
3dfe804
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import streamlit as st

from scipy.spatial.distance import cdist

import ase

import functools
import e3x
from flax import linen as nn
import jax
import jax.numpy as jnp
import matplotlib.pyplot as plt
import numpy as np
import optax


import pandas as pd
from dcmnet.modules import MessagePassingModel
from dcmnet.utils import clip_colors, apply_model
from dcmnet.data import prepare_batches
from dcmnet.plotting import plot_model

RANDOM_NUMBER = 0
filename = "test"
data_key, train_key = jax.random.split(jax.random.PRNGKey(RANDOM_NUMBER), 2)


# Model hyperparameters.
features = 16
max_degree = 2
num_iterations = 2
num_basis_functions = 8
cutoff = 4.0

# Create models
DCM1 = MessagePassingModel(
    features=features,
    max_degree=max_degree,
    num_iterations=num_iterations,
    num_basis_functions=num_basis_functions,
    cutoff=cutoff,
    n_dcm=1,
)



from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit.Chem import Draw

def get_grid_points(coordinates):
    """
    create a uniform grid of points around the molecule,
    starting from minimum and maximum coordinates of the molecule (plus minus some padding)
    :param coordinates:
    :return:
    """
    bounds = np.array([np.min(coordinates, axis=0),
                       np.max(coordinates, axis=0)])
    padding = 3.0
    bounds = bounds + np.array([-1, 1])[:, None] * padding
    grid_points = np.meshgrid(*[np.linspace(a, b, 15)
                                for a, b in zip(bounds[0], bounds[1])])

    grid_points = np.stack(grid_points, axis=0)
    grid_points = np.reshape(grid_points.T, [-1, 3])
    #  exclude points that are too close to the molecule
    grid_points = grid_points[
        #np.where(np.all(cdist(grid_points, coordinates) >= (2.0 - 1e-1), axis=-1))[0]]
        np.where(np.all(cdist(grid_points, coordinates) >= (2.5 - 1e-1), axis=-1))[0]]

    return grid_points


test_weights = pd.read_pickle("wbs/best_0.0_params.pkl")

smiles = 'C1NCCCC1'

smiles_mol = Chem.MolFromSmiles(smiles)
rdkit_mol = Chem.AddHs(smiles_mol) 
elements = [a.GetSymbol() for a in rdkit_mol.GetAtoms()]
# Generate a conformation
AllChem.EmbedMolecule(rdkit_mol)
coordinates = rdkit_mol.GetConformer(0).GetPositions()
surface = get_grid_points(coordinates)

for i, atom in enumerate(smiles_mol.GetAtoms()):
    # For each atom, set the property "molAtomMapNumber" to a custom number, let's say, the index of the atom in the molecule
    atom.SetProp("atomNote", str(atom.GetIdx()))

smiles_image = Draw.MolToImage(smiles_mol)

# display molecule
st.image(smiles_image)


vdw_surface = surface 
max_N_atoms = 60
max_grid_points = 3143
max_grid_points - len(vdw_surface)
try:
    Z = [np.array([int(_) for _ in elements])]
except:
    Z = [np.array([ase.data.atomic_numbers[_.capitalize()] for _ in elements])]
pad_Z = np.array([np.pad(Z[0], ((0,max_N_atoms - len(Z[0]))))])
pad_coords = np.array([np.pad(coordinates, ((0, max_N_atoms - len(coordinates)), (0,0)))])

pad_vdw_surface = []
_ = np.pad(vdw_surface, ((0, max_grid_points - len(vdw_surface)), (0,0)), "constant", constant_values=(0, 10000)) 
pad_vdw_surface.append(_)
pad_vdw_surface = np.array(pad_vdw_surface)


data_batch = dict(
    atomic_numbers=jnp.asarray(pad_Z),
    positions=jnp.asarray(pad_coords),
    mono=jnp.asarray(pad_Z),
    ngrid=jnp.array([len(vdw_surface)]),
    esp=jnp.asarray([np.zeros(max_grid_points)]),
    vdw_surface=jnp.asarray(pad_vdw_surface),
)

batch_size = 1

psi4_test_batches = prepare_batches(data_key, data_batch, batch_size)

batchID = 0
errors_train = []
batch = psi4_test_batches[batchID]

#mono, dipo = apply_model(DCM1, test_weights, batch, batch_size)
dcm1results = plot_model(DCM1, test_weights, batch, batch_size, 1, plot=False)

dipo = dcm1results["dipo"]
mono = dcm1results["mono"]
atoms = dcm1results["atoms"]
dcmol = dcm1results["dcmol"]

st.write(dipo)
st.write(mono)
#st.write(MessagePassingModel)
#st.write(test_weights)
#

from ase.visualize import view
display_mol = view(atoms+dcmol, viewer="x3d")

st.write(type(display_mol))

st.html(display_mol)

x = st.slider('Select a value')
st.write(x, 'squared is', x * x)