File size: 1,417 Bytes
3dfe804
 
245457d
 
 
 
 
 
 
 
 
136d978
 
 
 
684fecf
 
 
 
 
 
136d978
 
684fecf
 
 
 
 
 
 
 
 
 
136d978
684fecf
 
 
 
 
136d978
b303f65
245457d
 
 
 
 
 
 
 
 
 
 
 
684fecf
 
136d978
245457d
3dfe804
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import streamlit as st

import functools
import e3x
from flax import linen as nn
import jax
import jax.numpy as jnp
import matplotlib.pyplot as plt
import numpy as np
import optax


import pandas as pd
from dcmnet.modules import MessagePassingModel

from rdkit import Chem
from rdkit.Chem import AllChem

from dcmnet.psi4_ import *


test_weights = pd.read_pickle("wbs/best_0.0_params.pkl")

smiles = 'CCNCC'
# smiles = 'CC(CC1=CC=CC=C1)NC'

smiles_mol = Chem.MolFromSmiles(smiles)
rdkit_mol = Chem.AddHs(smiles_mol) 
elements = [a.GetSymbol() for a in rdkit_mol.GetAtoms()]
# Generate a conformation
AllChem.EmbedMolecule(rdkit_mol)
coordinates = rdkit_mol.GetConformer(0).GetPositions()
surface = get_grid_points(coordinates)

for i, atom in enumerate(smiles_mol.GetAtoms()):
    # For each atom, set the property "molAtomMapNumber" to a custom number, let's say, the index of the atom in the molecule
    atom.SetProp("atomNote", str(atom.GetIdx()))
# display molecule
st.image(smiles_mol)


# Disable future warnings.
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)

# Initialize PRNGKey for random number generation.
key = jax.random.PRNGKey(0)

key, rotation_key = jax.random.split(key)
rotation = e3x.so3.random_rotation(rotation_key)

st.write(rotation)

#st.write(MessagePassingModel)
#st.write(test_weights)


x = st.slider('Select a value')
st.write(x, 'squared is', x * x)