Spaces:
Sleeping
Sleeping
app.py
Browse filesThis is the optimised code
app.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gc
|
3 |
+
import torch
|
4 |
+
import librosa
|
5 |
+
import numpy as np
|
6 |
+
import gradio as gr
|
7 |
+
from transformers import (AutoProcessor, AutoModelForCTC,
|
8 |
+
AutoModelForTokenClassification, AutoTokenizer)
|
9 |
+
from speechbrain.inference.VAD import VAD
|
10 |
+
|
11 |
+
# π§ Check for CUDA
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
|
14 |
+
# π Load Voice Activity Detection (VAD) model
|
15 |
+
vad_model = VAD.from_hparams(source="speechbrain/vad-crdnn-libriparty", savedir="vad_model")
|
16 |
+
|
17 |
+
# π Function to clean up memory
|
18 |
+
def clean_up_memory():
|
19 |
+
gc.collect()
|
20 |
+
if torch.cuda.is_available():
|
21 |
+
torch.cuda.empty_cache()
|
22 |
+
|
23 |
+
# π Load Wav2Vec2 ASR model
|
24 |
+
asr_model_name = "facebook/wav2vec2-large-960h"
|
25 |
+
processor = AutoProcessor.from_pretrained(asr_model_name)
|
26 |
+
w2v2_model = AutoModelForCTC.from_pretrained(asr_model_name).to(device)
|
27 |
+
w2v2_model.eval()
|
28 |
+
|
29 |
+
# β Load model for punctuation restoration
|
30 |
+
recap_model_name = "kredor/punctuate-all"
|
31 |
+
recap_tokenizer = AutoTokenizer.from_pretrained(recap_model_name)
|
32 |
+
recap_model = AutoModelForTokenClassification.from_pretrained(recap_model_name).to(device)
|
33 |
+
recap_model.eval()
|
34 |
+
|
35 |
+
# π Function to add punctuation
|
36 |
+
def recap_sentence(string):
|
37 |
+
tokens = recap_tokenizer(string, return_tensors="pt", padding=True, truncation=True).to(device)
|
38 |
+
with torch.no_grad():
|
39 |
+
predictions = recap_model(**tokens).logits
|
40 |
+
|
41 |
+
predicted_ids = torch.argmax(predictions, dim=-1)[0]
|
42 |
+
words = string.split()
|
43 |
+
punctuated_text = []
|
44 |
+
|
45 |
+
for word, pred in zip(words, predicted_ids):
|
46 |
+
punctuated_text.append(word + recap_tokenizer.convert_ids_to_tokens([pred.item()])[0])
|
47 |
+
|
48 |
+
return " ".join(punctuated_text)
|
49 |
+
|
50 |
+
# π§ Function for chunk-based streaming transcription
|
51 |
+
def transcribe_audio_stream(audio_file, chunk_size=2.0):
|
52 |
+
audio, sr = librosa.load(audio_file, sr=16000)
|
53 |
+
duration = librosa.get_duration(y=audio, sr=sr)
|
54 |
+
transcriptions = []
|
55 |
+
|
56 |
+
for start in np.arange(0, duration, chunk_size):
|
57 |
+
end = min(start + chunk_size, duration)
|
58 |
+
chunk = audio[int(start * sr):int(end * sr)]
|
59 |
+
|
60 |
+
input_values = processor(chunk, return_tensors="pt", sampling_rate=16000).input_values.to(w2v2_model.device)
|
61 |
+
|
62 |
+
with torch.no_grad():
|
63 |
+
logits = w2v2_model(input_values).logits
|
64 |
+
|
65 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
66 |
+
transcription = processor.batch_decode(predicted_ids)[0]
|
67 |
+
transcriptions.append(transcription)
|
68 |
+
|
69 |
+
return " ".join(transcriptions)
|
70 |
+
|
71 |
+
# π Handle both live audio & file uploads
|
72 |
+
def return_prediction_w2v2(file_or_mic):
|
73 |
+
if not file_or_mic:
|
74 |
+
return "", "empty.txt"
|
75 |
+
|
76 |
+
# Transcribe file
|
77 |
+
transcription = transcribe_audio_stream(file_or_mic)
|
78 |
+
|
79 |
+
# Add punctuation
|
80 |
+
recap_result = recap_sentence(transcription)
|
81 |
+
|
82 |
+
# Save result to file
|
83 |
+
download_path = "transcription.txt"
|
84 |
+
with open(download_path, "w") as f:
|
85 |
+
f.write(recap_result)
|
86 |
+
|
87 |
+
clean_up_memory()
|
88 |
+
return recap_result, download_path
|
89 |
+
|
90 |
+
# π₯ Gradio Interface
|
91 |
+
mic_transcribe = gr.Interface(
|
92 |
+
fn=return_prediction_w2v2,
|
93 |
+
inputs=gr.Audio(sources="microphone", type="filepath"),
|
94 |
+
outputs=[gr.Textbox(label="Real-Time Transcription"), gr.File(label="Download Transcript")],
|
95 |
+
allow_flagging="never",
|
96 |
+
live=True
|
97 |
+
)
|
98 |
+
|
99 |
+
file_transcribe = gr.Interface(
|
100 |
+
fn=return_prediction_w2v2,
|
101 |
+
inputs=gr.Audio(sources="upload", type="filepath"),
|
102 |
+
outputs=[gr.Textbox(label="File Transcription"), gr.File(label="Download Transcript")],
|
103 |
+
allow_flagging="never",
|
104 |
+
live=False
|
105 |
+
)
|
106 |
+
|
107 |
+
# π Combine into a Gradio app
|
108 |
+
with gr.Blocks() as transcriber_app:
|
109 |
+
gr.Markdown("<h2>CCI Real-Time Sermon Transcription</h2>")
|
110 |
+
gr.TabbedInterface([mic_transcribe, file_transcribe],
|
111 |
+
["Real-Time (Microphone)", "Upload Audio"])
|
112 |
+
|
113 |
+
# π Run the Gradio app
|
114 |
+
if __name__ == "__main__":
|
115 |
+
transcriber_app.launch()
|