import streamlit as st import torch from transformers import WhisperForConditionalGeneration, WhisperProcessor from peft import PeftModel, PeftConfig import librosa # Model sozlamalari peft_model_id = "Elyordev/fine_tune_whisper_uzbek" language = "Uzbek" task = "transcribe" # PEFT konfiguratsiyasini yuklash peft_config = PeftConfig.from_pretrained(peft_model_id) # CPU uchun model yuklash model = WhisperForConditionalGeneration.from_pretrained( peft_config.base_model_name_or_path, device_map="cpu" ) model = PeftModel.from_pretrained(model, peft_model_id) # Tokenizer va Processor sozlash processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task) # Streamlit interfeysi st.title("Uzbek Whisper STT Hugging Face Spaces App") st.write("Fine-tuned Whisper model for Uzbek speech recognition. Upload your audio to get the transcription.") # Audio yuklash uploaded_file = st.file_uploader("Ovozli fayl yuklang", type=["wav", "mp3", "m4a"]) def transcribe(audio_file): audio, sr = librosa.load(audio_file, sr=16000) inputs = processor(audio, sampling_rate=16000, return_tensors="pt").input_features predicted_ids = model.generate(inputs, forced_decoder_ids=processor.get_decoder_prompt_ids(language="uz", task="transcribe")) transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] return transcription if uploaded_file: st.audio(uploaded_file, format="audio/wav") st.write("**Transkripsiya natijasi:**") transcription = transcribe(uploaded_file) st.success(transcription)