Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
from transformers import WhisperForConditionalGeneration, WhisperProcessor | |
from peft import PeftModel, PeftConfig | |
import librosa | |
# Model sozlamalari | |
peft_model_id = "Elyordev/fine_tune_whisper_uzbek" | |
language = "Uzbek" | |
task = "transcribe" | |
# PEFT konfiguratsiyasini yuklash | |
peft_config = PeftConfig.from_pretrained(peft_model_id) | |
# CPU uchun model yuklash | |
model = WhisperForConditionalGeneration.from_pretrained( | |
peft_config.base_model_name_or_path, | |
device_map="cpu" | |
) | |
model = PeftModel.from_pretrained(model, peft_model_id) | |
# Tokenizer va Processor sozlash | |
processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task) | |
# Streamlit interfeysi | |
st.title("Uzbek Whisper STT Hugging Face Spaces App") | |
st.write("Fine-tuned Whisper model for Uzbek speech recognition. Upload your audio to get the transcription.") | |
# Audio yuklash | |
uploaded_file = st.file_uploader("Ovozli fayl yuklang", type=["wav", "mp3", "m4a"]) | |
def transcribe(audio_file): | |
audio, sr = librosa.load(audio_file, sr=16000) | |
inputs = processor(audio, sampling_rate=16000, return_tensors="pt").input_features | |
predicted_ids = model.generate(inputs, forced_decoder_ids=processor.get_decoder_prompt_ids(language="uz", task="transcribe")) | |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] | |
return transcription | |
if uploaded_file: | |
st.audio(uploaded_file, format="audio/wav") | |
st.write("**Transkripsiya natijasi:**") | |
transcription = transcribe(uploaded_file) | |
st.success(transcription) |