Eitan Asher commited on
Commit
8a7477d
·
1 Parent(s): 1f1afcd

Add application file

Browse files
Dresses_DressShape ADDED
@@ -0,0 +1 @@
 
 
1
+ Subproject commit 1f1afcd6658cbc0fb6238f3a0f6d3aa29593e172
app.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import ViTForImageClassification, ViTFeatureExtractor, AutoConfig
3
+ import gradio as gr
4
+ from PIL import Image
5
+ import os
6
+ import logging
7
+ from safetensors.torch import load_file # Import safetensors loading function
8
+
9
+ # Set up logging
10
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
11
+
12
+ # Define the directory containing the model files
13
+ model_dir = "." # Use current directory
14
+
15
+ # Define paths to the specific model files
16
+ model_path = os.path.join(model_dir, "model.safetensors")
17
+ config_path = os.path.join(model_dir, "config.json")
18
+ preprocessor_path = os.path.join(model_dir, "preprocessor_config.json")
19
+
20
+ # Check if all required files exist
21
+ for path in [model_path, config_path, preprocessor_path]:
22
+ if not os.path.exists(path):
23
+ logging.error(f"File not found: {path}")
24
+ raise FileNotFoundError(f"Required file not found: {path}")
25
+ else:
26
+ logging.info(f"Found file: {path}")
27
+
28
+ # Load the configuration
29
+ config = AutoConfig.from_pretrained(config_path)
30
+
31
+ # Ensure the labels are consistent with the model's config
32
+ labels = list(config.id2label.values())
33
+ logging.info(f"Labels: {labels}")
34
+
35
+ # Load the feature extractor
36
+ feature_extractor = ViTFeatureExtractor.from_pretrained(preprocessor_path)
37
+
38
+ # Load the model using the safetensors file
39
+ state_dict = load_file(model_path) # Use safetensors to load the model weights
40
+ model = ViTForImageClassification.from_pretrained(
41
+ pretrained_model_name_or_path=None,
42
+ config=config,
43
+ state_dict=state_dict
44
+ )
45
+
46
+ # Ensure the model is in evaluation mode
47
+ model.eval()
48
+ logging.info("Model set to evaluation mode")
49
+
50
+ # Define the prediction function
51
+ def predict(image):
52
+ logging.info("Starting prediction")
53
+ logging.info(f"Input image shape: {image.size}")
54
+
55
+ # Preprocess the image
56
+ logging.info("Preprocessing image")
57
+ inputs = feature_extractor(images=image, return_tensors="pt")
58
+ logging.info(f"Preprocessed input shape: {inputs['pixel_values'].shape}")
59
+
60
+ logging.info("Running inference")
61
+ with torch.no_grad():
62
+ outputs = model(**inputs)
63
+ logits = outputs.logits
64
+ probabilities = torch.nn.functional.softmax(logits[0], dim=0)
65
+
66
+ logging.info(f"Raw logits: {logits}")
67
+ logging.info(f"Probabilities: {probabilities}")
68
+
69
+ # Prepare the output dictionary
70
+ result = {labels[i]: float(probabilities[i]) for i in range(len(labels))}
71
+ logging.info(f"Prediction result: {result}")
72
+
73
+ return result
74
+
75
+ # Set up the Gradio Interface
76
+ logging.info("Setting up Gradio interface")
77
+ gradio_app = gr.Interface(
78
+ fn=predict,
79
+ inputs=gr.Image(type="pil"),
80
+ outputs=gr.Label(num_top_classes=6),
81
+ title="Dress DressShape Classifier"
82
+ )
83
+
84
+ # Launch the app
85
+ if __name__ == "__main__":
86
+ logging.info("Launching the app")
87
+ gradio_app.launch()
config.json ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "google/vit-base-patch16-224-in21k",
3
+ "architectures": [
4
+ "ViTForImageClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "encoder_stride": 16,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.0,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "A-line",
13
+ "1": "Shift",
14
+ "2": "Bodycon",
15
+ "3": "Wrap",
16
+ "4": "Trapeze",
17
+ "5": "SweaterDress",
18
+ "6": "Kimono",
19
+ "7": "ShirtDress",
20
+ "8": "Slip",
21
+ "9": "Kaftan",
22
+ "10": "Puffball",
23
+ "11": "Mermaid",
24
+ "12": "Trumpet",
25
+ "13": "Column",
26
+ "14": "PrincessCut",
27
+ "15": "BiasCut"
28
+ },
29
+ "image_size": 224,
30
+ "initializer_range": 0.02,
31
+ "intermediate_size": 3072,
32
+ "label2id": {
33
+ "A-line": 0,
34
+ "BiasCut": 15,
35
+ "Bodycon": 2,
36
+ "Column": 13,
37
+ "Kaftan": 9,
38
+ "Kimono": 6,
39
+ "Mermaid": 11,
40
+ "PrincessCut": 14,
41
+ "Puffball": 10,
42
+ "Shift": 1,
43
+ "ShirtDress": 7,
44
+ "Slip": 8,
45
+ "SweaterDress": 5,
46
+ "Trapeze": 4,
47
+ "Trumpet": 12,
48
+ "Wrap": 3
49
+ },
50
+ "layer_norm_eps": 1e-12,
51
+ "model_type": "vit",
52
+ "num_attention_heads": 12,
53
+ "num_channels": 3,
54
+ "num_hidden_layers": 12,
55
+ "patch_size": 16,
56
+ "problem_type": "single_label_classification",
57
+ "qkv_bias": true,
58
+ "torch_dtype": "float32",
59
+ "transformers_version": "4.47.1"
60
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d320e526a8993080b8a27b2f754ebf70ef0fe4b1f936e91abf6442138a6fbdf0
3
+ size 343267040
preprocessor_config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": null,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.5,
8
+ 0.5,
9
+ 0.5
10
+ ],
11
+ "image_processor_type": "ViTFeatureExtractor",
12
+ "image_std": [
13
+ 0.5,
14
+ 0.5,
15
+ 0.5
16
+ ],
17
+ "resample": 2,
18
+ "rescale_factor": 0.00392156862745098,
19
+ "size": {
20
+ "height": 224,
21
+ "width": 224
22
+ }
23
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5df765db21f4dc2ec6c70334b4cd4beade54420c15c2093248cd4f694c339bdb
3
+ size 5496