import io from random import choice from PIL import Image import gradio as gr from transformers import pipeline import matplotlib.pyplot as plt # Initialize the models detector50 = pipeline(model="facebook/detr-resnet-50") detector101 = pipeline(model="facebook/detr-resnet-101") # Define colors and font dictionary for bounding boxes and labels COLORS = ["#ff7f7f", "#ff7fbf", "#ff7fff", "#bf7fff", "#7f7fff", "#7fbfff", "#7fffff", "#7fffbf", "#7fff7f", "#bfff7f", "#ffff7f", "#ffbf7f"] fdic = { "family": "Impact", "style": "italic", "size": 15, "color": "yellow", "weight": "bold" } def get_figure(in_pil_img, in_results): # Create a figure to display the image and annotations plt.figure(figsize=(16, 10)) plt.imshow(in_pil_img) ax = plt.gca() # Add bounding boxes and labels to the image for prediction in in_results: selected_color = choice(COLORS) x, y = prediction['box']['xmin'], prediction['box']['ymin'] w, h = prediction['box']['xmax'] - x, prediction['box']['ymax'] - y ax.add_patch(plt.Rectangle((x, y), w, h, fill=False, color=selected_color, linewidth=3)) ax.text(x, y, f"{prediction['label']}: {round(prediction['score']*100, 1)}%", fontdict=fdic) plt.axis("off") plt.tight_layout() # Convert the figure to a PIL Image and return buf = io.BytesIO() plt.savefig(buf, format='png', bbox_inches='tight') buf.seek(0) return Image.open(buf) def infer(model, in_pil_img): # Perform inference using the specified model and input image results = detector101(in_pil_img) if model == "detr-resnet-101" else detector50(in_pil_img) return get_figure(in_pil_img, results) # Define Gradio interface with local image examples with gr.Blocks() as demo: gr.Markdown("## DETR Object Detection") model = gr.Radio(["detr-resnet-50", "detr-resnet-101"], value="detr-resnet-50", label="Model name") # Use local image files instead of URLs examples = gr.Examples( examples=[ ["image1.jpg"], ["image2.jpg"] ], inputs=[gr.Image(type="pil")], label="Try these example images" ) input_image = gr.Image(label="Input image", type="pil") output_image = gr.Image(label="Output image") send_btn = gr.Button("Infer") # Trigger inference on button click send_btn.click(fn=infer, inputs=[model, input_image], outputs=output_image) demo.launch()