Spaces:
Running
Running
import io | |
from random import choice | |
from PIL import Image | |
import gradio as gr | |
from transformers import pipeline | |
import matplotlib.pyplot as plt | |
# Initialize the models | |
detector50 = pipeline(model="facebook/detr-resnet-50") | |
detector101 = pipeline(model="facebook/detr-resnet-101") | |
# Define colors and font dictionary for bounding boxes and labels | |
COLORS = ["#ff7f7f", "#ff7fbf", "#ff7fff", "#bf7fff", | |
"#7f7fff", "#7fbfff", "#7fffff", "#7fffbf", | |
"#7fff7f", "#bfff7f", "#ffff7f", "#ffbf7f"] | |
fdic = { | |
"family": "Impact", | |
"style": "italic", | |
"size": 15, | |
"color": "yellow", | |
"weight": "bold" | |
} | |
def get_figure(in_pil_img, in_results): | |
# Create a figure to display the image and annotations | |
plt.figure(figsize=(16, 10)) | |
plt.imshow(in_pil_img) | |
ax = plt.gca() | |
# Add bounding boxes and labels to the image | |
for prediction in in_results: | |
selected_color = choice(COLORS) | |
x, y = prediction['box']['xmin'], prediction['box']['ymin'] | |
w, h = prediction['box']['xmax'] - x, prediction['box']['ymax'] - y | |
ax.add_patch(plt.Rectangle((x, y), w, h, fill=False, color=selected_color, linewidth=3)) | |
ax.text(x, y, f"{prediction['label']}: {round(prediction['score']*100, 1)}%", fontdict=fdic) | |
plt.axis("off") | |
plt.tight_layout() | |
# Convert the figure to a PIL Image and return | |
buf = io.BytesIO() | |
plt.savefig(buf, format='png', bbox_inches='tight') | |
buf.seek(0) | |
return Image.open(buf) | |
def infer(model, in_pil_img): | |
# Perform inference using the specified model and input image | |
results = detector101(in_pil_img) if model == "detr-resnet-101" else detector50(in_pil_img) | |
return get_figure(in_pil_img, results) | |
# Define Gradio interface with local image examples | |
with gr.Blocks() as demo: | |
gr.Markdown("## DETR Object Detection") | |
model = gr.Radio(["detr-resnet-50", "detr-resnet-101"], value="detr-resnet-50", label="Model name") | |
# Use local image files instead of URLs | |
examples = gr.Examples( | |
examples=[ | |
["image1.jpg"], | |
["image2.jpg"] | |
], | |
inputs=[gr.Image(type="pil")], | |
label="Try these example images" | |
) | |
input_image = gr.Image(label="Input image", type="pil") | |
output_image = gr.Image(label="Output image") | |
send_btn = gr.Button("Infer") | |
# Trigger inference on button click | |
send_btn.click(fn=infer, inputs=[model, input_image], outputs=output_image) | |
demo.launch() | |