Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import torch | |
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
from einops import rearrange | |
import requests | |
import spaces | |
from huggingface_hub import login | |
from gradio_imageslider import ImageSlider # Import ImageSlider | |
from image_datasets.canny_dataset import canny_processor, c_crop | |
from src.flux.sampling import denoise_controlnet, get_noise, get_schedule, prepare, unpack | |
from src.flux.util import load_ae, load_clip, load_t5, load_flow_model, load_controlnet, load_safetensors | |
# Download and load the ControlNet model | |
model_url = "https://huggingface.co/XLabs-AI/flux-controlnet-canny/resolve/main/controlnet.safetensors?download=true" | |
model_path = "./controlnet.safetensors" | |
if not os.path.exists(model_path): | |
response = requests.get(model_url) | |
with open(model_path, 'wb') as f: | |
f.write(response.content) | |
# Source: https://github.com/XLabs-AI/x-flux.git | |
name = "flux-dev" | |
device = torch.device("cuda") | |
offload = False | |
is_schnell = name == "flux-schnell" | |
model, ae, t5, clip, controlnet = None, None, None, None, None | |
def load_models(): | |
global model, ae, t5, clip, controlnet | |
t5 = load_t5(device, max_length=256 if is_schnell else 512) | |
clip = load_clip(device) | |
model = load_flow_model(name, device=device) | |
ae = load_ae(name, device=device) | |
controlnet = load_controlnet(name, device).to(device).to(torch.bfloat16) | |
checkpoint = load_safetensors(model_path) | |
controlnet.load_state_dict(checkpoint, strict=False) | |
load_models() | |
def preprocess_image(image, target_width, target_height, crop=True): | |
if crop: | |
image = c_crop(image) # Crop the image to square | |
original_width, original_height = image.size | |
# Resize to match the target size without stretching | |
scale = max(target_width / original_width, target_height / original_height) | |
resized_width = int(scale * original_width) | |
resized_height = int(scale * original_height) | |
image = image.resize((resized_width, resized_height), Image.LANCZOS) | |
# Center crop to match the target dimensions | |
left = (resized_width - target_width) // 2 | |
top = (resized_height - target_height) // 2 | |
image = image.crop((left, top, left + target_width, top + target_height)) | |
else: | |
image = image.resize((target_width, target_height), Image.LANCZOS) | |
return image | |
def preprocess_canny_image(image, target_width, target_height, crop=True): | |
image = preprocess_image(image, target_width, target_height, crop=crop) | |
image = canny_processor(image) | |
return image | |
def generate_image(prompt, control_image, num_steps=50, guidance=4, width=512, height=512, seed=42, random_seed=False): | |
if random_seed: | |
seed = np.random.randint(0, 10000) | |
if not os.path.isdir("./controlnet_results/"): | |
os.makedirs("./controlnet_results/") | |
torch_device = torch.device("cuda") | |
model.to(torch_device) | |
t5.to(torch_device) | |
clip.to(torch_device) | |
ae.to(torch_device) | |
controlnet.to(torch_device) | |
width = 16 * width // 16 | |
height = 16 * height // 16 | |
timesteps = get_schedule(num_steps, (width // 8) * (height // 8) // (16 * 16), shift=(not is_schnell)) | |
processed_input = preprocess_image(control_image, width, height) | |
canny_processed = preprocess_canny_image(control_image, width, height) | |
controlnet_cond = torch.from_numpy((np.array(canny_processed) / 127.5) - 1) | |
controlnet_cond = controlnet_cond.permute(2, 0, 1).unsqueeze(0).to(torch.bfloat16).to(torch_device) | |
torch.manual_seed(seed) | |
with torch.no_grad(): | |
x = get_noise(1, height, width, device=torch_device, dtype=torch.bfloat16, seed=seed) | |
inp_cond = prepare(t5=t5, clip=clip, img=x, prompt=prompt) | |
x = denoise_controlnet(model, **inp_cond, controlnet=controlnet, timesteps=timesteps, guidance=guidance, controlnet_cond=controlnet_cond) | |
x = unpack(x.float(), height, width) | |
x = ae.decode(x) | |
x1 = x.clamp(-1, 1) | |
x1 = rearrange(x1[-1], "c h w -> h w c") | |
output_img = Image.fromarray((127.5 * (x1 + 1.0)).cpu().byte().numpy()) | |
return [processed_input, output_img] # Return both images for slider | |
interface = gr.Interface( | |
fn=generate_image, | |
inputs=[ | |
gr.Textbox(label="Prompt"), | |
gr.Image(type="pil", label="Control Image"), | |
gr.Slider(step=1, minimum=1, maximum=64, value=28, label="Num Steps"), | |
gr.Slider(minimum=0.1, maximum=10, value=4, label="Guidance"), | |
gr.Slider(minimum=128, maximum=2048, step=128, value=1024, label="Width"), | |
gr.Slider(minimum=128, maximum=2048, step=128, value=1024, label="Height"), | |
gr.Number(value=42, label="Seed"), | |
gr.Checkbox(label="Random Seed") | |
], | |
outputs=ImageSlider(label="Before / After"), # Use ImageSlider as the output | |
title="FLUX.1 Controlnet Canny", | |
description="Generate images using ControlNet and a text prompt.\n[[non-commercial license, Flux.1 Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)]" | |
) | |
if __name__ == "__main__": | |
interface.launch() | |