Spaces:
Running
Running
File size: 5,841 Bytes
fd3a517 53a6bc7 fd3a517 53a6bc7 7145dd2 26ebe16 19fc903 53a6bc7 fd3a517 5fcc3eb fd3a517 5fcc3eb fd3a517 19fc903 fd3a517 19fc903 7145dd2 19fc903 93ddd94 19fc903 9381693 7145dd2 19fc903 7145dd2 19fc903 7145dd2 fd3a517 9381693 7145dd2 19fc903 fd3a517 19fc903 fd3a517 19fc903 fd3a517 19fc903 fd3a517 19fc903 fd3a517 19fc903 fd3a517 7145dd2 fd3a517 7145dd2 fd3a517 7145dd2 fd3a517 7145dd2 fd3a517 7145dd2 fd3a517 ac4fa5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import os
import gradio as gr
from gradio_client import Client, handle_file
from pathlib import Path
from gradio.utils import get_cache_folder
import torch
import torchvision.transforms as transforms
from PIL import Image
class Examples(gr.helpers.Examples):
def __init__(self, *args, cached_folder=None, **kwargs):
super().__init__(*args, **kwargs, _initiated_directly=False)
if cached_folder is not None:
self.cached_folder = cached_folder
# self.cached_file = Path(self.cached_folder) / "log.csv"
self.create()
HF_TOKEN = os.environ.get('HF_KEY')
client = Client("Canyu/Diception",
max_workers=3,
hf_token=HF_TOKEN)
map_prompt = {
'depth': '[[image2depth]]',
'normal': '[[image2normal]]',
'pose': '[[image2pose]]',
'entity segmentation': '[[image2panoptic coarse]]',
'point segmentation': '[[image2segmentation]]',
'semantic segmentation': '[[image2semantic]]',
}
def download_additional_params(model_name, filename="add_params.bin"):
# 下载文件并返回文件路径
file_path = hf_hub_download(repo_id=model_name, filename=filename, use_auth_token=HF_TOKEN)
return file_path
# 加载 additional_params.bin 文件
def load_additional_params(model_name):
# 下载 additional_params.bin
params_path = download_additional_params(model_name)
# 使用 torch.load() 加载文件内容
additional_params = torch.load(params_path, map_location='cpu')
# 返回加载的参数内容
return additional_params
def process_image_check(path_input, prompt):
if path_input is None:
raise gr.Error(
"Missing image in the left pane: please upload an image first."
)
if len(prompt) == 0:
raise gr.Error(
"At least 1 prediction type is needed."
)
def process_image_4(image_path, prompt):
inputs = []
for p in prompt:
cur_p = map_prompt[p]
coor_point = []
point_labels = []
cur_input = {
# 'original_size': [[w,h]],
# 'target_size': [[768, 768]],
'prompt': [cur_p],
'coor_point': coor_point,
'point_labels': point_labels,
}
inputs.append(cur_input)
return inputs
def inf(image_path, prompt):
print(image_path)
print(prompt)
inputs = process_image_4(image_path, prompt)
# return None
return client.predict(
image=handle_file(image_path),
data=inputs,
api_name="/inf"
)
def clear_cache():
return None, None
def run_demo_server():
options = ['depth', 'normal', 'entity', 'pose']
gradio_theme = gr.themes.Default()
with gr.Blocks(
theme=gradio_theme,
title="Matting",
) as demo:
with gr.Row():
gr.Markdown("# Diception Demo")
with gr.Row():
gr.Markdown("### All results are generated using the same single model. To facilitate input processing, we separate point-prompted segmentation and semantic segmentation, as they require input points and segmentation targets.")
with gr.Row():
checkbox_group = gr.CheckboxGroup(choices=options, label="Select options:")
with gr.Row():
with gr.Column():
matting_image_input = gr.Image(
label="Input Image",
type="filepath",
)
with gr.Row():
matting_image_submit_btn = gr.Button(
value="Estimate Matting", variant="primary"
)
matting_image_reset_btn = gr.Button(value="Reset")
with gr.Row():
img_clear_button = gr.Button("Clear Cache")
with gr.Column():
# matting_image_output = gr.Image(label='Output')
matting_image_output = gr.Image(label='Matting Output')
# label="Matting Output",
# type="filepath",
# show_download_button=True,
# show_share_button=True,
# interactive=False,
# elem_classes="slider",
# position=0.25,
# )
img_clear_button.click(clear_cache, outputs=[matting_image_input, matting_image_output])
matting_image_submit_btn.click(
fn=process_image_check,
inputs=[matting_image_input, checkbox_group],
outputs=None,
preprocess=False,
queue=False,
).success(
# fn=process_pipe_matting,
fn=inf,
inputs=[
matting_image_input,
checkbox_group
],
outputs=[matting_image_output],
concurrency_limit=1,
)
matting_image_reset_btn.click(
fn=lambda: (
None,
None,
),
inputs=[],
outputs=[
matting_image_input,
matting_image_output,
],
queue=False,
)
gr.Examples(
fn=inf,
examples=[
["assets/person.jpg", ['depth', 'normal', 'entity', 'pose']]
],
inputs=[matting_image_input, checkbox_group],
outputs=[matting_image_output],
cache_examples=True,
# cache_examples=False,
# cached_folder="cache_dir",
)
demo.queue(
api_open=False,
).launch()
if __name__ == '__main__':
run_demo_server() |