File size: 5,841 Bytes
fd3a517
53a6bc7
fd3a517
 
 
53a6bc7
7145dd2
26ebe16
19fc903
53a6bc7
fd3a517
 
 
 
 
 
 
 
 
5fcc3eb
 
fd3a517
5fcc3eb
 
fd3a517
 
19fc903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd3a517
 
 
 
19fc903
 
 
 
 
 
 
 
 
 
 
7145dd2
19fc903
93ddd94
 
 
19fc903
 
9381693
 
7145dd2
19fc903
 
 
 
 
 
 
 
7145dd2
 
 
19fc903
7145dd2
fd3a517
9381693
7145dd2
19fc903
fd3a517
 
 
 
 
 
19fc903
fd3a517
 
 
 
 
 
19fc903
 
 
fd3a517
19fc903
 
fd3a517
 
 
 
 
 
19fc903
fd3a517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19fc903
fd3a517
 
 
 
 
7145dd2
fd3a517
 
7145dd2
fd3a517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7145dd2
fd3a517
7145dd2
fd3a517
7145dd2
fd3a517
 
 
 
 
 
 
 
 
 
 
 
 
ac4fa5c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import gradio as gr
from gradio_client import Client, handle_file
from pathlib import Path
from gradio.utils import get_cache_folder

import torch
import torchvision.transforms as transforms
from PIL import Image

class Examples(gr.helpers.Examples):
    def __init__(self, *args, cached_folder=None, **kwargs):
        super().__init__(*args, **kwargs, _initiated_directly=False)
        if cached_folder is not None:
            self.cached_folder = cached_folder
            # self.cached_file = Path(self.cached_folder) / "log.csv"
        self.create()


HF_TOKEN = os.environ.get('HF_KEY')

client = Client("Canyu/Diception",
                max_workers=3,
                hf_token=HF_TOKEN)


map_prompt = {
    'depth': '[[image2depth]]',
    'normal': '[[image2normal]]',
    'pose': '[[image2pose]]',
    'entity segmentation': '[[image2panoptic coarse]]',
    'point segmentation': '[[image2segmentation]]',
    'semantic segmentation': '[[image2semantic]]',
}

def download_additional_params(model_name, filename="add_params.bin"):
    # 下载文件并返回文件路径
    file_path = hf_hub_download(repo_id=model_name, filename=filename, use_auth_token=HF_TOKEN)
    return file_path

# 加载 additional_params.bin 文件
def load_additional_params(model_name):
    # 下载 additional_params.bin
    params_path = download_additional_params(model_name)
    
    # 使用 torch.load() 加载文件内容
    additional_params = torch.load(params_path, map_location='cpu')
    
    # 返回加载的参数内容
    return additional_params

def process_image_check(path_input, prompt):
    if path_input is None:
        raise gr.Error(
            "Missing image in the left pane: please upload an image first."
        )
    if len(prompt) == 0:
        raise gr.Error(
            "At least 1 prediction type is needed."
        )



def process_image_4(image_path, prompt):

    inputs = []
    for p in prompt:
        cur_p = map_prompt[p]

        coor_point = []
        point_labels = []
        

        cur_input = {
                # 'original_size': [[w,h]],
                # 'target_size': [[768, 768]],
                'prompt': [cur_p],
                'coor_point': coor_point,
                'point_labels': point_labels,
            }
        inputs.append(cur_input)

    return inputs


def inf(image_path, prompt):
    print(image_path)
    print(prompt)
    inputs = process_image_4(image_path, prompt)
    # return None
    return client.predict(
      image=handle_file(image_path),
      data=inputs,
      api_name="/inf"
    )

def clear_cache():
    return None, None

def run_demo_server():
    options = ['depth', 'normal', 'entity', 'pose']
    gradio_theme = gr.themes.Default()
    with gr.Blocks(
        theme=gradio_theme,
        title="Matting",
    ) as demo:
        with gr.Row():
            gr.Markdown("# Diception Demo")
        with gr.Row():
            gr.Markdown("### All results are generated using the same single model. To facilitate input processing, we separate point-prompted segmentation and semantic segmentation, as they require input points and segmentation targets.")
        with gr.Row():
            checkbox_group = gr.CheckboxGroup(choices=options, label="Select options:")

        with gr.Row():
            with gr.Column():
                matting_image_input = gr.Image(
                    label="Input Image",
                    type="filepath",
                )

                with gr.Row():
                    matting_image_submit_btn = gr.Button(
                        value="Estimate Matting", variant="primary"
                    )
                    matting_image_reset_btn = gr.Button(value="Reset")
                
                with gr.Row():
                    img_clear_button = gr.Button("Clear Cache")
                
            with gr.Column():
                # matting_image_output = gr.Image(label='Output')
                matting_image_output =  gr.Image(label='Matting Output')
                    
                        #     label="Matting Output",
                        #     type="filepath",
                        #     show_download_button=True,
                        #     show_share_button=True,
                        #     interactive=False,
                        #     elem_classes="slider",
                        #     position=0.25,
                        # )
                
            

        img_clear_button.click(clear_cache, outputs=[matting_image_input, matting_image_output])

        matting_image_submit_btn.click(
            fn=process_image_check,
            inputs=[matting_image_input, checkbox_group],
            outputs=None,
            preprocess=False,
            queue=False,
        ).success(
            # fn=process_pipe_matting,
            fn=inf,
            inputs=[
                matting_image_input,
                checkbox_group
            ],
            outputs=[matting_image_output],
            concurrency_limit=1,
        )

        matting_image_reset_btn.click(
            fn=lambda: (
                None,
                None,
            ),
            inputs=[],
            outputs=[
                matting_image_input,
                matting_image_output,
            ],
            queue=False,
        )

        gr.Examples(
            fn=inf,
            examples=[
                ["assets/person.jpg", ['depth', 'normal', 'entity', 'pose']]             
            ],
            inputs=[matting_image_input, checkbox_group],
            outputs=[matting_image_output],
            cache_examples=True,
            # cache_examples=False,
            # cached_folder="cache_dir",
        )
        
    demo.queue(
        api_open=False,
    ).launch()


if __name__ == '__main__':

    run_demo_server()