Bils's picture
Update app.py
6842006 verified
import gradio as gr
import torch
from transformers import AutoConfig, AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from PIL import Image
import numpy as np
import spaces
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Constants
DEFAULT_WIDTH = 384
DEFAULT_HEIGHT = 384
PARALLEL_SIZE = 5
PATCH_SIZE = 16
# Load model and processor with error handling
def load_model():
try:
model_path = "deepseek-ai/Janus-Pro-7B"
config = AutoConfig.from_pretrained(model_path)
language_config = config.language_config
language_config._attn_implementation = 'eager'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Loading model on device: {device}")
vl_gpt = AutoModelForCausalLM.from_pretrained(
model_path,
language_config=language_config,
trust_remote_code=True,
torch_dtype=torch.bfloat16 if device.type == "cuda" else torch.float32
).to(device)
vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
return vl_gpt, vl_chat_processor, device
except Exception as e:
logger.error(f"Model loading failed: {str(e)}")
raise RuntimeError("Failed to load model. Please check the model path and dependencies.")
try:
vl_gpt, vl_chat_processor, device = load_model()
tokenizer = vl_chat_processor.tokenizer
except RuntimeError as e:
raise e
# Helper functions with improved memory management
def generate(input_ids, width, height, cfg_weight=5, temperature=1.0, parallel_size=5, progress=None):
try:
torch.cuda.empty_cache()
tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int, device=device)
for i in range(parallel_size * 2):
tokens[i, :] = input_ids
if i % 2 != 0:
tokens[i, 1:-1] = vl_chat_processor.pad_id
with torch.no_grad():
inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
generated_tokens = torch.zeros((parallel_size, 576), dtype=torch.int, device=device)
pkv = None
total_steps = 576
for i in range(total_steps):
if progress is not None:
progress((i + 1) / total_steps, desc="Generating image tokens")
outputs = vl_gpt.language_model.model(
inputs_embeds=inputs_embeds,
use_cache=True,
past_key_values=pkv
)
pkv = outputs.past_key_values
hidden_states = outputs.last_hidden_state
logits = vl_gpt.gen_head(hidden_states[:, -1, :])
logit_cond = logits[0::2, :]
logit_uncond = logits[1::2, :]
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
probs = torch.softmax(logits / temperature, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
generated_tokens[:, i] = next_token.squeeze(dim=-1)
next_token = torch.cat([next_token.unsqueeze(dim=1)] * 2, dim=1).view(-1)
img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
inputs_embeds = img_embeds.unsqueeze(dim=1)
return generated_tokens
except RuntimeError as e:
logger.error(f"Generation error: {str(e)}")
raise RuntimeError("Generation failed due to memory constraints. Try reducing the parallel size.")
finally:
torch.cuda.empty_cache()
def unpack(patches, width, height, parallel_size=5):
try:
patches = patches.detach().to(device='cpu', dtype=torch.float32).numpy()
patches = patches.transpose(0, 2, 3, 1)
patches = np.clip((patches + 1) / 2 * 255, 0, 255)
return [Image.fromarray(patch.astype(np.uint8)) for patch in patches]
except Exception as e:
logger.error(f"Unpacking error: {str(e)}")
raise RuntimeError("Failed to process generated image data.")
@torch.inference_mode()
@spaces.GPU(duration=120)
def generate_image(prompt, seed=None, guidance=5, t2i_temperature=1.0, progress=gr.Progress()):
try:
if not prompt.strip():
raise gr.Error("Please enter a valid prompt.")
if progress is not None:
progress(0, desc="Initializing...")
torch.cuda.empty_cache()
# Seed management
if seed is None:
seed = torch.seed()
else:
seed = int(seed)
torch.manual_seed(seed)
if device.type == "cuda":
torch.cuda.manual_seed(seed)
messages = [{'role': '<|User|>', 'content': prompt}, {'role': '<|Assistant|>', 'content': ''}]
text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
conversations=messages,
sft_format=vl_chat_processor.sft_format,
system_prompt=''
) + vl_chat_processor.image_start_tag
input_ids = torch.tensor(tokenizer.encode(text), dtype=torch.long, device=device)
if progress is not None:
progress(0.1, desc="Generating image tokens...")
generated_tokens = generate(
input_ids,
DEFAULT_WIDTH,
DEFAULT_HEIGHT,
cfg_weight=guidance,
temperature=t2i_temperature,
parallel_size=PARALLEL_SIZE,
progress=progress
)
if progress is not None:
progress(0.9, desc="Processing images...")
patches = vl_gpt.gen_vision_model.decode_code(
generated_tokens.to(dtype=torch.int),
shape=[PARALLEL_SIZE, 8, DEFAULT_WIDTH // PATCH_SIZE, DEFAULT_HEIGHT // PATCH_SIZE]
)
images = unpack(patches, DEFAULT_WIDTH, DEFAULT_HEIGHT, PARALLEL_SIZE)
return images
except Exception as e:
logger.error(f"Generation failed: {str(e)}", exc_info=True)
if "index out of range" in str(e).lower():
raise gr.Error("Image generation failed due to internal error. Please try again with different parameters.")
else:
raise gr.Error(f"Image generation failed: {str(e)}")
def create_interface():
with gr.Blocks(title="Janus-Pro-7B Image Generator", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# Text-to-Image Generation with Janus-Pro-7B
**Generate high-quality images from text prompts using DeepSeek's advanced multimodal AI model.**
""")
with gr.Row():
with gr.Column(scale=3):
prompt_input = gr.Textbox(
label="Prompt",
placeholder="Describe the image you want to generate...",
lines=3
)
generate_btn = gr.Button("Generate Images", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
with gr.Group():
seed_input = gr.Number(
label="Seed",
value=None,
precision=0,
info="Leave empty for random seed"
)
guidance_slider = gr.Slider(
label="CFG Guidance Weight",
minimum=3,
maximum=10,
value=5,
step=0.5,
info="Higher values = more prompt adherence, lower values = more creativity"
)
temp_slider = gr.Slider(
label="Temperature",
minimum=0.1,
maximum=1.0,
value=1.0,
step=0.1,
info="Higher values = more randomness, lower values = more deterministic"
)
with gr.Column(scale=2):
output_gallery = gr.Gallery(
label="Generated Images",
columns=2,
height=600,
preview=True
)
status = gr.Textbox(
label="Status",
interactive=False
)
gr.Examples(
examples=[
["A futuristic cityscape at sunset with flying cars and holographic advertisements"],
["An astronaut riding a horse in photorealistic style"],
["A cute robotic cat sitting on a stack of ancient books, digital art"]
],
inputs=prompt_input
)
gr.Markdown("""
## Model Information
- **Model:** [Janus-Pro-7B](https://huggingface.co/deepseek-ai/Janus-Pro-7B)
- **Output Resolution:** 384x384 pixels
- **Parallel Generation:** 5 images per request
""")
# Footer Section
gr.Markdown("""
<hr style="margin-top: 2em; margin-bottom: 1em;">
<div style="text-align: center; color: #666; font-size: 0.9em;">
Created with ❤️ by <a href="https://bilsimaging.com" target="_blank" style="color: #2563eb; text-decoration: none;">bilsimaging.com</a>
</div>
""")
# Visitor Badge
gr.HTML("""
<div style="text-align: center; margin-top: 1em;">
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2FDeepseekJanusPro%2F">
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2FDeepseekJanusPro%2F&countColor=%23263759"
alt="Visitor Badge"
style="display: inline-block; margin: 0 auto;">
</a>
</div>
""")
generate_btn.click(
generate_image,
inputs=[prompt_input, seed_input, guidance_slider, temp_slider],
outputs=output_gallery,
api_name="generate"
)
demo.load(
fn=lambda: f"Device Status: {'GPU ✅' if device.type == 'cuda' else 'CPU ⚠️'}",
outputs=status,
queue=False
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(share=True)