|
import gradio as gr |
|
import plotly.graph_objects as go |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("gradio/NYC-Airbnb-Open-Data", split="train") |
|
df = dataset.to_pandas() |
|
|
|
def filter_map(min_price, max_price, boroughs): |
|
|
|
filtered_df = df[(df['neighbourhood_group'].isin(boroughs)) & |
|
(df['price'] > min_price) & (df['price'] < max_price)] |
|
names = filtered_df["name"].tolist() |
|
prices = filtered_df["price"].tolist() |
|
text_list = [(names[i], prices[i]) for i in range(0, len(names))] |
|
fig = go.Figure(go.Scattermapbox( |
|
customdata=text_list, |
|
lat=filtered_df['latitude'].tolist(), |
|
lon=filtered_df['longitude'].tolist(), |
|
mode='markers', |
|
marker=go.scattermapbox.Marker( |
|
size=6 |
|
), |
|
hoverinfo="text", |
|
hovertemplate='<b>Name</b>: %{customdata[0]}<br><b>Price</b>: $%{customdata[1]}' |
|
)) |
|
|
|
fig.update_layout( |
|
mapbox_style="open-street-map", |
|
hovermode='closest', |
|
mapbox=dict( |
|
bearing=0, |
|
center=go.layout.mapbox.Center( |
|
lat=40.67, |
|
lon=-73.90 |
|
), |
|
pitch=0, |
|
zoom=9 |
|
), |
|
) |
|
|
|
return fig |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Column(): |
|
with gr.Row(): |
|
min_price = gr.Number(value=250, label="Minimum Price") |
|
max_price = gr.Number(value=1000, label="Maximum Price") |
|
boroughs = gr.CheckboxGroup(choices=["Queens", "Brooklyn", "Manhattan", "Bronx", "Staten Island"], value=["Queens", "Brooklyn"], label="Select Boroughs:") |
|
btn = gr.Button(value="Update Filter") |
|
map = gr.Plot() |
|
demo.load(filter_map, [min_price, max_price, boroughs], map) |
|
btn.click(filter_map, [min_price, max_price, boroughs], map) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |