Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,16 @@ import whisper
|
|
3 |
import torch
|
4 |
import os
|
5 |
from pydub import AudioSegment, silence
|
6 |
-
from faster_whisper import WhisperModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Mapping of model names to Whisper model sizes
|
9 |
MODELS = {
|
@@ -122,32 +131,48 @@ LANGUAGE_NAME_TO_CODE = {
|
|
122 |
# Reverse mapping of language codes to full language names
|
123 |
CODE_TO_LANGUAGE_NAME = {v: k for k, v in LANGUAGE_NAME_TO_CODE.items()}
|
124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
def detect_language(audio_file):
|
126 |
"""Detect the language of the audio file."""
|
127 |
-
|
128 |
-
|
129 |
-
compute_type = "float32" if device == "cuda" else "int8"
|
130 |
-
|
131 |
-
# Load the faster-whisper model for language detection
|
132 |
-
model = WhisperModel(MODELS["Faster Whisper Large v3"], device=device, compute_type=compute_type)
|
133 |
-
|
134 |
-
# Convert audio to 16kHz mono for better compatibility
|
135 |
-
audio = AudioSegment.from_file(audio_file)
|
136 |
-
audio = audio.set_frame_rate(16000).set_channels(1)
|
137 |
-
processed_audio_path = "processed_audio.wav"
|
138 |
-
audio.export(processed_audio_path, format="wav")
|
139 |
-
|
140 |
-
# Detect the language using faster-whisper
|
141 |
-
segments, info = model.transcribe(processed_audio_path, task="translate", language=None)
|
142 |
-
detected_language_code = info.language
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
def remove_silence(audio_file, silence_threshold=-40, min_silence_len=500):
|
153 |
"""
|
@@ -161,81 +186,188 @@ def remove_silence(audio_file, silence_threshold=-40, min_silence_len=500):
|
|
161 |
Returns:
|
162 |
str: Path to the output audio file with silence removed.
|
163 |
"""
|
164 |
-
|
165 |
-
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
non_silent_audio += audio[start:chunk[0]] # Add non-silent part
|
179 |
-
start = chunk[1] # Move to the end of the silent chunk
|
180 |
-
non_silent_audio += audio[start:] # Add the remaining part
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
185 |
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
def transcribe_audio(audio_file, language="Auto Detect", model_size="Faster Whisper Large v3"):
|
189 |
"""Transcribe the audio file."""
|
190 |
-
|
191 |
-
|
192 |
-
audio = audio.set_frame_rate(16000).set_channels(1)
|
193 |
-
processed_audio_path = "processed_audio.wav"
|
194 |
-
audio.export(processed_audio_path, format="wav")
|
195 |
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
200 |
-
compute_type = "float32" if device == "cuda" else "int8"
|
201 |
|
202 |
-
#
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
repetition_penalty=1.1,
|
209 |
-
temperature=[0.0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0],
|
210 |
-
)
|
211 |
-
transcription = " ".join([segment.text for segment in segments])
|
212 |
-
detected_language_code = info.language
|
213 |
-
detected_language = CODE_TO_LANGUAGE_NAME.get(detected_language_code, "Unknown Language")
|
214 |
-
else:
|
215 |
-
# Use the standard Whisper model
|
216 |
-
model = whisper.load_model(MODELS[model_size])
|
217 |
|
218 |
-
#
|
219 |
-
if
|
220 |
-
|
221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
detected_language = CODE_TO_LANGUAGE_NAME.get(detected_language_code, "Unknown Language")
|
223 |
else:
|
224 |
-
|
225 |
-
|
226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
|
|
|
|
235 |
|
236 |
# Define the Gradio interface
|
237 |
with gr.Blocks() as demo:
|
238 |
-
gr.Markdown("# Audio
|
239 |
|
240 |
with gr.Tab("Detect Language"):
|
241 |
gr.Markdown("Upload an audio file to detect its language.")
|
@@ -276,6 +408,19 @@ with gr.Blocks() as demo:
|
|
276 |
silence_output = gr.Audio(label="Processed Audio (Silence Removed)", type="filepath")
|
277 |
silence_button = gr.Button("Remove Silence")
|
278 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
# Link buttons to functions
|
280 |
detect_button.click(detect_language, inputs=detect_audio_input, outputs=detect_language_output)
|
281 |
transcribe_button.click(
|
@@ -288,6 +433,11 @@ with gr.Blocks() as demo:
|
|
288 |
inputs=[silence_audio_input, silence_threshold_slider, min_silence_len_slider],
|
289 |
outputs=silence_output
|
290 |
)
|
|
|
|
|
|
|
|
|
|
|
291 |
|
292 |
# Launch the Gradio interface
|
293 |
demo.launch()
|
|
|
3 |
import torch
|
4 |
import os
|
5 |
from pydub import AudioSegment, silence
|
6 |
+
from faster_whisper import WhisperModel
|
7 |
+
import numpy as np
|
8 |
+
from scipy.io import wavfile
|
9 |
+
from scipy.signal import correlate
|
10 |
+
import tempfile
|
11 |
+
import logging
|
12 |
+
|
13 |
+
# Set up logging
|
14 |
+
logging.basicConfig(level=logging.INFO)
|
15 |
+
logger = logging.getLogger(__name__)
|
16 |
|
17 |
# Mapping of model names to Whisper model sizes
|
18 |
MODELS = {
|
|
|
131 |
# Reverse mapping of language codes to full language names
|
132 |
CODE_TO_LANGUAGE_NAME = {v: k for k, v in LANGUAGE_NAME_TO_CODE.items()}
|
133 |
|
134 |
+
def convert_to_wav(audio_file):
|
135 |
+
"""Convert any audio file to WAV format."""
|
136 |
+
audio = AudioSegment.from_file(audio_file)
|
137 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav:
|
138 |
+
wav_path = temp_wav.name
|
139 |
+
audio.export(wav_path, format="wav")
|
140 |
+
return wav_path
|
141 |
+
|
142 |
+
def resample_audio(audio_segment, target_sample_rate):
|
143 |
+
"""Resample an audio segment to the target sample rate."""
|
144 |
+
return audio_segment.set_frame_rate(target_sample_rate)
|
145 |
+
|
146 |
def detect_language(audio_file):
|
147 |
"""Detect the language of the audio file."""
|
148 |
+
if audio_file is None:
|
149 |
+
return "Error: No audio file uploaded."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
+
try:
|
152 |
+
# Convert audio to WAV format
|
153 |
+
wav_path = convert_to_wav(audio_file)
|
154 |
+
|
155 |
+
# Define device and compute type for faster-whisper
|
156 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
157 |
+
compute_type = "float32" if device == "cuda" else "int8"
|
158 |
+
|
159 |
+
# Load the faster-whisper model for language detection
|
160 |
+
model = WhisperModel(MODELS["Faster Whisper Large v3"], device=device, compute_type=compute_type)
|
161 |
+
|
162 |
+
# Detect the language using faster-whisper
|
163 |
+
segments, info = model.transcribe(wav_path, task="translate", language=None)
|
164 |
+
detected_language_code = info.language
|
165 |
+
|
166 |
+
# Get the full language name from the code
|
167 |
+
detected_language = CODE_TO_LANGUAGE_NAME.get(detected_language_code, "Unknown Language")
|
168 |
+
|
169 |
+
# Clean up temporary WAV file
|
170 |
+
os.remove(wav_path)
|
171 |
+
|
172 |
+
return f"Detected Language: {detected_language}"
|
173 |
+
except Exception as e:
|
174 |
+
logger.error(f"Error in detect_language: {str(e)}")
|
175 |
+
return f"Error: {str(e)}"
|
176 |
|
177 |
def remove_silence(audio_file, silence_threshold=-40, min_silence_len=500):
|
178 |
"""
|
|
|
186 |
Returns:
|
187 |
str: Path to the output audio file with silence removed.
|
188 |
"""
|
189 |
+
if audio_file is None:
|
190 |
+
return None
|
191 |
|
192 |
+
try:
|
193 |
+
# Convert audio to WAV format
|
194 |
+
wav_path = convert_to_wav(audio_file)
|
195 |
+
|
196 |
+
# Load the audio file
|
197 |
+
audio = AudioSegment.from_file(wav_path)
|
198 |
+
|
199 |
+
# Detect silent chunks
|
200 |
+
silent_chunks = silence.detect_silence(
|
201 |
+
audio,
|
202 |
+
min_silence_len=min_silence_len,
|
203 |
+
silence_thresh=silence_threshold
|
204 |
+
)
|
205 |
+
|
206 |
+
# Remove silent chunks
|
207 |
+
non_silent_audio = AudioSegment.empty()
|
208 |
+
start = 0
|
209 |
+
for chunk in silent_chunks:
|
210 |
+
non_silent_audio += audio[start:chunk[0]] # Add non-silent part
|
211 |
+
start = chunk[1] # Move to the end of the silent chunk
|
212 |
+
non_silent_audio += audio[start:] # Add the remaining part
|
213 |
+
|
214 |
+
# Export the processed audio
|
215 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_output:
|
216 |
+
output_path = temp_output.name
|
217 |
+
non_silent_audio.export(output_path, format="wav")
|
218 |
+
|
219 |
+
# Clean up temporary WAV file
|
220 |
+
os.remove(wav_path)
|
221 |
+
|
222 |
+
return output_path
|
223 |
+
except Exception as e:
|
224 |
+
logger.error(f"Error in remove_silence: {str(e)}")
|
225 |
+
return f"Error: {str(e)}"
|
226 |
+
|
227 |
+
def detect_and_trim_audio(main_audio, target_audio, threshold=0.5):
|
228 |
+
"""
|
229 |
+
Detect the target audio in the main audio and trim the main audio to include only the detected segments.
|
230 |
|
231 |
+
Args:
|
232 |
+
main_audio (str): Path to the main audio file.
|
233 |
+
target_audio (str): Path to the target audio file.
|
234 |
+
threshold (float): Detection threshold (0 to 1). Higher values mean stricter detection.
|
|
|
|
|
|
|
235 |
|
236 |
+
Returns:
|
237 |
+
str: Path to the trimmed audio file.
|
238 |
+
str: Detected timestamps in the format "start-end (in seconds)".
|
239 |
+
"""
|
240 |
+
if main_audio is None or target_audio is None:
|
241 |
+
return None, "Error: Please upload both main and target audio files."
|
242 |
|
243 |
+
try:
|
244 |
+
# Convert audio files to WAV format
|
245 |
+
main_wav_path = convert_to_wav(main_audio)
|
246 |
+
target_wav_path = convert_to_wav(target_audio)
|
247 |
+
|
248 |
+
# Load audio files
|
249 |
+
main_rate, main_data = wavfile.read(main_wav_path)
|
250 |
+
target_rate, target_data = wavfile.read(target_wav_path)
|
251 |
+
|
252 |
+
# Ensure both audio files have the same sample rate
|
253 |
+
if main_rate != target_rate:
|
254 |
+
logger.warning(f"Sample rates differ: main_audio={main_rate}, target_audio={target_rate}. Resampling target audio.")
|
255 |
+
target_segment = AudioSegment.from_file(target_wav_path)
|
256 |
+
target_segment = resample_audio(target_segment, main_rate)
|
257 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_resampled:
|
258 |
+
resampled_path = temp_resampled.name
|
259 |
+
target_segment.export(resampled_path, format="wav")
|
260 |
+
target_rate, target_data = wavfile.read(resampled_path)
|
261 |
+
|
262 |
+
# Normalize audio data
|
263 |
+
main_data = main_data.astype(np.float32) / np.iinfo(main_data.dtype).max
|
264 |
+
target_data = target_data.astype(np.float32) / np.iinfo(target_data.dtype).max
|
265 |
+
|
266 |
+
# Perform cross-correlation to detect the target audio in the main audio
|
267 |
+
correlation = correlate(main_data, target_data, mode='valid')
|
268 |
+
correlation = np.abs(correlation)
|
269 |
+
max_corr = np.max(correlation)
|
270 |
+
|
271 |
+
# Find the peak in the cross-correlation result
|
272 |
+
peak_index = np.argmax(correlation)
|
273 |
+
peak_value = correlation[peak_index]
|
274 |
+
|
275 |
+
# Check if the peak value exceeds the threshold
|
276 |
+
if peak_value < threshold * max_corr:
|
277 |
+
return None, "Error: Target audio not detected in the main audio."
|
278 |
+
|
279 |
+
# Calculate the start and end times of the target audio in the main audio
|
280 |
+
start_time = peak_index / main_rate
|
281 |
+
end_time = (peak_index + len(target_data)) / main_rate
|
282 |
+
|
283 |
+
# Trim the main audio to include only the detected segment
|
284 |
+
main_audio_segment = AudioSegment.from_file(main_wav_path)
|
285 |
+
start_ms = int(start_time * 1000)
|
286 |
+
end_ms = int(end_time * 1000)
|
287 |
+
trimmed_audio = main_audio_segment[start_ms:end_ms]
|
288 |
+
|
289 |
+
# Export the trimmed audio
|
290 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_output:
|
291 |
+
output_path = temp_output.name
|
292 |
+
trimmed_audio.export(output_path, format="wav")
|
293 |
+
|
294 |
+
# Format timestamps
|
295 |
+
timestamps_str = f"{start_time:.2f}-{end_time:.2f}"
|
296 |
+
|
297 |
+
# Clean up temporary WAV files
|
298 |
+
os.remove(main_wav_path)
|
299 |
+
os.remove(target_wav_path)
|
300 |
+
if 'resampled_path' in locals():
|
301 |
+
os.remove(resampled_path)
|
302 |
+
|
303 |
+
return output_path, timestamps_str
|
304 |
+
except Exception as e:
|
305 |
+
logger.error(f"Error in detect_and_trim_audio: {str(e)}")
|
306 |
+
return None, f"Error: {str(e)}"
|
307 |
|
308 |
def transcribe_audio(audio_file, language="Auto Detect", model_size="Faster Whisper Large v3"):
|
309 |
"""Transcribe the audio file."""
|
310 |
+
if audio_file is None:
|
311 |
+
return "Error: No audio file uploaded."
|
|
|
|
|
|
|
312 |
|
313 |
+
try:
|
314 |
+
# Convert audio to WAV format
|
315 |
+
wav_path = convert_to_wav(audio_file)
|
|
|
|
|
316 |
|
317 |
+
# Convert audio to 16kHz mono for better compatibility
|
318 |
+
audio = AudioSegment.from_file(wav_path)
|
319 |
+
audio = audio.set_frame_rate(16000).set_channels(1)
|
320 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_processed:
|
321 |
+
processed_audio_path = temp_processed.name
|
322 |
+
audio.export(processed_audio_path, format="wav")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
323 |
|
324 |
+
# Load the appropriate model
|
325 |
+
if model_size == "Faster Whisper Large v3":
|
326 |
+
# Define device and compute type for faster-whisper
|
327 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
328 |
+
compute_type = "float32" if device == "cuda" else "int8"
|
329 |
+
|
330 |
+
# Use faster-whisper for the Systran model
|
331 |
+
model = WhisperModel(MODELS[model_size], device=device, compute_type=compute_type)
|
332 |
+
segments, info = model.transcribe(
|
333 |
+
processed_audio_path,
|
334 |
+
task="transcribe",
|
335 |
+
word_timestamps=True,
|
336 |
+
repetition_penalty=1.1,
|
337 |
+
temperature=[0.0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0],
|
338 |
+
)
|
339 |
+
transcription = " ".join([segment.text for segment in segments])
|
340 |
+
detected_language_code = info.language
|
341 |
detected_language = CODE_TO_LANGUAGE_NAME.get(detected_language_code, "Unknown Language")
|
342 |
else:
|
343 |
+
# Use the standard Whisper model
|
344 |
+
model = whisper.load_model(MODELS[model_size])
|
345 |
+
|
346 |
+
# Transcribe the audio
|
347 |
+
if language == "Auto Detect":
|
348 |
+
result = model.transcribe(processed_audio_path, fp16=False) # Auto-detect language
|
349 |
+
detected_language_code = result.get("language", "unknown")
|
350 |
+
detected_language = CODE_TO_LANGUAGE_NAME.get(detected_language_code, "Unknown Language")
|
351 |
+
else:
|
352 |
+
language_code = LANGUAGE_NAME_TO_CODE.get(language, "en") # Default to English if not found
|
353 |
+
result = model.transcribe(processed_audio_path, language=language_code, fp16=False)
|
354 |
+
detected_language = language
|
355 |
+
|
356 |
+
transcription = result["text"]
|
357 |
|
358 |
+
# Clean up processed audio file
|
359 |
+
os.remove(processed_audio_path)
|
360 |
+
os.remove(wav_path)
|
361 |
+
|
362 |
+
# Return transcription and detected language
|
363 |
+
return f"Detected Language: {detected_language}\n\nTranscription:\n{transcription}"
|
364 |
+
except Exception as e:
|
365 |
+
logger.error(f"Error in transcribe_audio: {str(e)}")
|
366 |
+
return f"Error: {str(e)}"
|
367 |
|
368 |
# Define the Gradio interface
|
369 |
with gr.Blocks() as demo:
|
370 |
+
gr.Markdown("# Audio Processing Tool")
|
371 |
|
372 |
with gr.Tab("Detect Language"):
|
373 |
gr.Markdown("Upload an audio file to detect its language.")
|
|
|
408 |
silence_output = gr.Audio(label="Processed Audio (Silence Removed)", type="filepath")
|
409 |
silence_button = gr.Button("Remove Silence")
|
410 |
|
411 |
+
with gr.Tab("Detect and Trim Audio"):
|
412 |
+
gr.Markdown("Upload a main audio file and a target audio file. The app will detect the target audio in the main audio and trim it.")
|
413 |
+
main_audio_input = gr.Audio(type="filepath", label="Upload Main Audio File")
|
414 |
+
target_audio_input = gr.Audio(type="filepath", label="Upload Target Audio File")
|
415 |
+
threshold_slider = gr.Slider(
|
416 |
+
minimum=0.1, maximum=1.0, value=0.5, step=0.1,
|
417 |
+
label="Detection Threshold",
|
418 |
+
info="Higher values mean stricter detection."
|
419 |
+
)
|
420 |
+
trimmed_audio_output = gr.Audio(label="Trimmed Audio", type="filepath")
|
421 |
+
timestamps_output = gr.Textbox(label="Detected Timestamps (in seconds)")
|
422 |
+
detect_trim_button = gr.Button("Detect and Trim")
|
423 |
+
|
424 |
# Link buttons to functions
|
425 |
detect_button.click(detect_language, inputs=detect_audio_input, outputs=detect_language_output)
|
426 |
transcribe_button.click(
|
|
|
433 |
inputs=[silence_audio_input, silence_threshold_slider, min_silence_len_slider],
|
434 |
outputs=silence_output
|
435 |
)
|
436 |
+
detect_trim_button.click(
|
437 |
+
detect_and_trim_audio,
|
438 |
+
inputs=[main_audio_input, target_audio_input, threshold_slider],
|
439 |
+
outputs=[trimmed_audio_output, timestamps_output]
|
440 |
+
)
|
441 |
|
442 |
# Launch the Gradio interface
|
443 |
demo.launch()
|