Akshayram1's picture
Update app.py
57c929f verified
import os
import gradio as gr
import PIL.Image
import torch
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor
# Model and Processor Setup
model_id = "gv-hf/paligemma2-3b-mix-448"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
HF_KEY = os.getenv("HF_KEY")
if not HF_KEY:
raise ValueError("Please set the HF_KEY environment variable with your Hugging Face API token")
# Load model and processor
model = PaliGemmaForConditionalGeneration.from_pretrained(
model_id,
token=HF_KEY,
trust_remote_code=True
).eval().to(device)
processor = PaliGemmaProcessor.from_pretrained(
model_id,
token=HF_KEY,
trust_remote_code=True
)
# Inference Function
def infer(image: PIL.Image.Image, text: str, max_new_tokens: int) -> str:
inputs = processor(text=text, images=image, return_tensors="pt").to(device)
with torch.inference_mode():
generated_ids = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=False
)
result = processor.batch_decode(generated_ids, skip_special_tokens=True)
return result[0][len(text):].lstrip("\n")
# Image Captioning (with user input for improvement)
def generate_caption(image: PIL.Image.Image, caption_improvement: str) -> str:
return infer(image, f"caption: {caption_improvement}", max_new_tokens=50)
# Object Detection/Segmentation
def parse_segmentation(input_image, input_text):
out = infer(input_image, input_text, max_new_tokens=200)
objs = extract_objs(out.lstrip("\n"), input_image.size[0], input_image.size[1], unique_labels=True)
labels = set(obj.get('name') for obj in objs if obj.get('name'))
color_map = {l: COLORS[i % len(COLORS)] for i, l in enumerate(labels)}
highlighted_text = [(obj['content'], obj.get('name')) for obj in objs]
annotated_img = (
input_image,
[
(
obj['mask'] if obj.get('mask') is not None else obj['xyxy'],
obj['name'] or '',
)
for obj in objs
if 'mask' in obj or 'xyxy' in obj
],
)
has_annotations = bool(annotated_img[1])
return annotated_img
# Helper functions for object detection/segmentation
def _get_params(checkpoint):
def transp(kernel):
return np.transpose(kernel, (2, 3, 1, 0))
def conv(name):
return {
'bias': checkpoint[name + '.bias'],
'kernel': transp(checkpoint[name + '.weight']),
}
def resblock(name):
return {
'Conv_0': conv(name + '.0'),
'Conv_1': conv(name + '.2'),
'Conv_2': conv(name + '.4'),
}
return {
'_embeddings': checkpoint['_vq_vae._embedding'],
'Conv_0': conv('decoder.0'),
'ResBlock_0': resblock('decoder.2.net'),
'ResBlock_1': resblock('decoder.3.net'),
'ConvTranspose_0': conv('decoder.4'),
'ConvTranspose_1': conv('decoder.6'),
'ConvTranspose_2': conv('decoder.8'),
'ConvTranspose_3': conv('decoder.10'),
'Conv_1': conv('decoder.12'),
}
def _quantized_values_from_codebook_indices(codebook_indices, embeddings):
batch_size, num_tokens = codebook_indices.shape
assert num_tokens == 16, codebook_indices.shape
unused_num_embeddings, embedding_dim = embeddings.shape
encodings = jnp.take(embeddings, codebook_indices.reshape((-1)), axis=0)
encodings = encodings.reshape((batch_size, 4, 4, embedding_dim))
return encodings
def extract_objs(text, width, height, unique_labels=False):
objs = []
seen = set()
while text:
m = _SEGMENT_DETECT_RE.match(text)
if not m:
break
gs = list(m.groups())
before = gs.pop(0)
name = gs.pop()
y1, x1, y2, x2 = [int(x) / 1024 for x in gs[:4]]
y1, x1, y2, x2 = map(round, (y1*height, x1*width, y2*height, x2*width))
seg_indices = gs[4:20]
if seg_indices[0] is None:
mask = None
else:
seg_indices = np.array([int(x) for x in seg_indices], dtype=np.int32)
m64, = _get_reconstruct_masks()(seg_indices[None])[..., 0]
m64 = np.clip(np.array(m64) * 0.5 + 0.5, 0, 1)
m64 = PIL.Image.fromarray((m64 * 255).astype('uint8'))
mask = np.zeros([height, width])
if y2 > y1 and x2 > x1:
mask[y1:y2, x1:x2] = np.array(m64.resize([x2 - x1, y2 - y1])) / 255.0
content = m.group()
if before:
objs.append(dict(content=before))
content = content[len(before):]
while unique_labels and name in seen:
name = (name or '') + "'"
seen.add(name)
objs.append(dict(
content=content, xyxy=(x1, y1, x2, y2), mask=mask, name=name))
text = text[len(before) + len(content):]
if text:
objs.append(dict(content=text))
return objs
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# PaliGemma Multi-Modal App")
gr.Markdown("Upload an image and explore its features using the PaliGemma model!")
with gr.Tabs():
# Tab 1: Image Captioning
with gr.Tab("Image Captioning"):
with gr.Row():
with gr.Column():
caption_image = gr.Image(type="pil", label="Upload Image", width=512, height=512)
caption_improvement_input = gr.Textbox(label="Improvement Input", placeholder="Enter description to improve caption")
caption_btn = gr.Button("Generate Caption")
with gr.Column():
caption_output = gr.Text(label="Generated Caption")
caption_btn.click(fn=generate_caption, inputs=[caption_image, caption_improvement_input], outputs=[caption_output])
# Tab 2: Segment/Detect
with gr.Tab("Segment/Detect"):
with gr.Row():
with gr.Column():
detect_image = gr.Image(type="pil", label="Upload Image", width=512, height=512)
detect_text = gr.Textbox(label="Entities to Detect", placeholder="List entities to segment/detect")
detect_btn = gr.Button("Detect/Segment")
with gr.Column():
detect_output = gr.AnnotatedImage(label="Annotated Image")
detect_btn.click(fn=parse_segmentation, inputs=[detect_image, detect_text], outputs=[detect_output])
# Launch the App
if __name__ == "__main__":
demo.queue(max_size=10).launch(debug=True)