Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import PIL.Image | |
import torch | |
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor | |
# Model and Processor Setup | |
model_id = "gv-hf/paligemma2-3b-mix-448" | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
HF_KEY = os.getenv("HF_KEY") | |
if not HF_KEY: | |
raise ValueError("Please set the HF_KEY environment variable with your Hugging Face API token") | |
# Load model and processor | |
model = PaliGemmaForConditionalGeneration.from_pretrained( | |
model_id, | |
token=HF_KEY, | |
trust_remote_code=True | |
).eval().to(device) | |
processor = PaliGemmaProcessor.from_pretrained( | |
model_id, | |
token=HF_KEY, | |
trust_remote_code=True | |
) | |
# Inference Function | |
def infer(image: PIL.Image.Image, text: str, max_new_tokens: int) -> str: | |
inputs = processor(text=text, images=image, return_tensors="pt").to(device) | |
with torch.inference_mode(): | |
generated_ids = model.generate( | |
**inputs, | |
max_new_tokens=max_new_tokens, | |
do_sample=False | |
) | |
result = processor.batch_decode(generated_ids, skip_special_tokens=True) | |
return result[0][len(text):].lstrip("\n") | |
# Image Captioning (with user input for improvement) | |
def generate_caption(image: PIL.Image.Image, caption_improvement: str) -> str: | |
return infer(image, f"caption: {caption_improvement}", max_new_tokens=50) | |
# Object Detection/Segmentation | |
def parse_segmentation(input_image, input_text): | |
out = infer(input_image, input_text, max_new_tokens=200) | |
objs = extract_objs(out.lstrip("\n"), input_image.size[0], input_image.size[1], unique_labels=True) | |
labels = set(obj.get('name') for obj in objs if obj.get('name')) | |
color_map = {l: COLORS[i % len(COLORS)] for i, l in enumerate(labels)} | |
highlighted_text = [(obj['content'], obj.get('name')) for obj in objs] | |
annotated_img = ( | |
input_image, | |
[ | |
( | |
obj['mask'] if obj.get('mask') is not None else obj['xyxy'], | |
obj['name'] or '', | |
) | |
for obj in objs | |
if 'mask' in obj or 'xyxy' in obj | |
], | |
) | |
has_annotations = bool(annotated_img[1]) | |
return annotated_img | |
# Helper functions for object detection/segmentation | |
def _get_params(checkpoint): | |
def transp(kernel): | |
return np.transpose(kernel, (2, 3, 1, 0)) | |
def conv(name): | |
return { | |
'bias': checkpoint[name + '.bias'], | |
'kernel': transp(checkpoint[name + '.weight']), | |
} | |
def resblock(name): | |
return { | |
'Conv_0': conv(name + '.0'), | |
'Conv_1': conv(name + '.2'), | |
'Conv_2': conv(name + '.4'), | |
} | |
return { | |
'_embeddings': checkpoint['_vq_vae._embedding'], | |
'Conv_0': conv('decoder.0'), | |
'ResBlock_0': resblock('decoder.2.net'), | |
'ResBlock_1': resblock('decoder.3.net'), | |
'ConvTranspose_0': conv('decoder.4'), | |
'ConvTranspose_1': conv('decoder.6'), | |
'ConvTranspose_2': conv('decoder.8'), | |
'ConvTranspose_3': conv('decoder.10'), | |
'Conv_1': conv('decoder.12'), | |
} | |
def _quantized_values_from_codebook_indices(codebook_indices, embeddings): | |
batch_size, num_tokens = codebook_indices.shape | |
assert num_tokens == 16, codebook_indices.shape | |
unused_num_embeddings, embedding_dim = embeddings.shape | |
encodings = jnp.take(embeddings, codebook_indices.reshape((-1)), axis=0) | |
encodings = encodings.reshape((batch_size, 4, 4, embedding_dim)) | |
return encodings | |
def extract_objs(text, width, height, unique_labels=False): | |
objs = [] | |
seen = set() | |
while text: | |
m = _SEGMENT_DETECT_RE.match(text) | |
if not m: | |
break | |
gs = list(m.groups()) | |
before = gs.pop(0) | |
name = gs.pop() | |
y1, x1, y2, x2 = [int(x) / 1024 for x in gs[:4]] | |
y1, x1, y2, x2 = map(round, (y1*height, x1*width, y2*height, x2*width)) | |
seg_indices = gs[4:20] | |
if seg_indices[0] is None: | |
mask = None | |
else: | |
seg_indices = np.array([int(x) for x in seg_indices], dtype=np.int32) | |
m64, = _get_reconstruct_masks()(seg_indices[None])[..., 0] | |
m64 = np.clip(np.array(m64) * 0.5 + 0.5, 0, 1) | |
m64 = PIL.Image.fromarray((m64 * 255).astype('uint8')) | |
mask = np.zeros([height, width]) | |
if y2 > y1 and x2 > x1: | |
mask[y1:y2, x1:x2] = np.array(m64.resize([x2 - x1, y2 - y1])) / 255.0 | |
content = m.group() | |
if before: | |
objs.append(dict(content=before)) | |
content = content[len(before):] | |
while unique_labels and name in seen: | |
name = (name or '') + "'" | |
seen.add(name) | |
objs.append(dict( | |
content=content, xyxy=(x1, y1, x2, y2), mask=mask, name=name)) | |
text = text[len(before) + len(content):] | |
if text: | |
objs.append(dict(content=text)) | |
return objs | |
# Gradio Interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# PaliGemma Multi-Modal App") | |
gr.Markdown("Upload an image and explore its features using the PaliGemma model!") | |
with gr.Tabs(): | |
# Tab 1: Image Captioning | |
with gr.Tab("Image Captioning"): | |
with gr.Row(): | |
with gr.Column(): | |
caption_image = gr.Image(type="pil", label="Upload Image", width=512, height=512) | |
caption_improvement_input = gr.Textbox(label="Improvement Input", placeholder="Enter description to improve caption") | |
caption_btn = gr.Button("Generate Caption") | |
with gr.Column(): | |
caption_output = gr.Text(label="Generated Caption") | |
caption_btn.click(fn=generate_caption, inputs=[caption_image, caption_improvement_input], outputs=[caption_output]) | |
# Tab 2: Segment/Detect | |
with gr.Tab("Segment/Detect"): | |
with gr.Row(): | |
with gr.Column(): | |
detect_image = gr.Image(type="pil", label="Upload Image", width=512, height=512) | |
detect_text = gr.Textbox(label="Entities to Detect", placeholder="List entities to segment/detect") | |
detect_btn = gr.Button("Detect/Segment") | |
with gr.Column(): | |
detect_output = gr.AnnotatedImage(label="Annotated Image") | |
detect_btn.click(fn=parse_segmentation, inputs=[detect_image, detect_text], outputs=[detect_output]) | |
# Launch the App | |
if __name__ == "__main__": | |
demo.queue(max_size=10).launch(debug=True) | |