Abdulrahman Al-Ghamdi commited on
Commit
950f4ad
·
verified ·
1 Parent(s): f97a927

Create code.py

Browse files
Files changed (1) hide show
  1. code.py +37 -0
code.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ # Load the sentiment analysis pipeline using your fine-tuned model
5
+ model_name = "Abduuu/ArabReview-Sentiment"
6
+ sentiment_pipeline = pipeline("text-classification", model=model_name, tokenizer=model_name)
7
+
8
+ # Define label mapping for better readability
9
+ label_mapping = {"LABEL_0": "Negative 😞", "LABEL_1": "Positive 😊"}
10
+
11
+ # Define a function for sentiment prediction
12
+ def predict_sentiment(review):
13
+ result = sentiment_pipeline(review)[0]
14
+ sentiment_label = label_mapping[result["label"]]
15
+ confidence = f"{result['score']:.2f}"
16
+ return f"Sentiment: {sentiment_label} | Confidence: {confidence}"
17
+
18
+ # Define Gradio interface
19
+ iface = gr.Interface(
20
+ fn=predict_sentiment, # Function for sentiment prediction
21
+ inputs=gr.Textbox(label="Enter Your Restaurant Review", placeholder="اكتب مراجعتك هنا..."),
22
+ outputs=gr.Textbox(label="Predicted Sentiment", interactive=False),
23
+ title="🍽️ Arabic Restaurant Review Sentiment Analysis 🚀",
24
+ description="Enter an Arabic restaurant review, and the model will predict whether it's **Positive 😊** or **Negative 😞**.",
25
+ examples=[
26
+ ["الطعام لذيذ جدًا والخدمة رائعة!"], # Positive
27
+ ["التجربة كانت مريعة، الطعام كان سيئًا جدًا!"], # Negative
28
+ ["السعر مرتفع جدًا مقابل الجودة المتوسطة."], # Neutral
29
+ ["لن أعود إلى هذا المكان أبدًا، أسوأ تجربة لي!"], # Negative
30
+ ["أفضل مطعم زرته في حياتي!"], # Positive
31
+ ],
32
+ allow_flagging="never" # Disables user flagging for simplicity
33
+ )
34
+
35
+ # Launch the app
36
+ if __name__ == "__main__":
37
+ iface.launch()