#refer llama recipes for more info https://github.com/huggingface/huggingface-llama-recipes/blob/main/inference-api.ipynb #huggingface-llama-recipes : https://github.com/huggingface/huggingface-llama-recipes/tree/main import gradio as gr from openai import OpenAI import os import json ACCESS_TOKEN = os.getenv("myHFapiToken") print("Access token loaded.") client = OpenAI( base_url="https://api-inference.huggingface.co/v1/", api_key=ACCESS_TOKEN, ) print("Client initialized.") SYSTEM_PROMPTS0 = os.getenv("SYSTEM_PROMPTS") import ast SYSTEM_PROMPTS = ast.literal_eval(SYSTEM_PROMPTS0) # Convert string back to dictionary def respond( message, history: list[tuple[str, str]], preset_prompt, custom_prompt, max_tokens, temperature, top_p, model_name, ): print(f"Received message: {message}") print(f"History: {history}") system_message = custom_prompt if custom_prompt.strip() else SYSTEM_PROMPTS[preset_prompt] print(f"System message: {system_message}") print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") print(f"Selected model: {model_name}") messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) print(f"Added user message to context: {val[0]}") if val[1]: messages.append({"role": "assistant", "content": val[1]}) print(f"Added assistant message to context: {val[1]}") messages.append({"role": "user", "content": message}) response = "" print("Sending request to OpenAI API.") for message in client.chat.completions.create( model=model_name, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, messages=messages, ): token = message.choices[0].delta.content print(f"Received token: {token}") response += token yield response print("Completed response generation.") models = [ "meta-llama/Llama-3.2-3B-Instruct", "PowerInfer/SmallThinker-3B-Preview", "Qwen/QwQ-32B-Preview", "Qwen/Qwen2.5-Coder-32B-Instruct", "microsoft/Phi-3-mini-128k-instruct", ] with gr.Blocks(css=".main-container {max-width: 900px; margin: auto;}") as demo: # Add the banner image with gr.Row(): gr.Image("banner.png", elem_id="banner-image", show_label=False) # Title and description gr.Markdown( """ # 🧠 LLM Test Platform Welcome to the **LLM Test Platform**! Use this interface to interact with various AI language models. Configure the settings, provide your input, and explore the capabilities of state-of-the-art models. """, elem_id="title", ) with gr.Row(): model_dropdown = gr.Dropdown( choices=models, value=models[0], label="**Select Model:**", elem_id="model-dropdown" ) # Create the chat components with gr.Row(): with gr.Column(): chatbot = gr.Chatbot(height=500, elem_id="chatbot") # No `.style()` with gr.Column(scale=1): msg = gr.Textbox( show_label=False, placeholder="Type your message here...", container=False, elem_id="input-box" ) clear = gr.Button("Clear", elem_id="clear-button") # Additional configuration inputs in an accordion with gr.Accordion("⚙️ Configuration", open=False): preset_prompt = gr.Dropdown( choices=list(SYSTEM_PROMPTS.keys()), value=list(SYSTEM_PROMPTS.keys())[0], label="**Select System Prompt:**", ) custom_prompt = gr.Textbox( value="", label="**Custom System Prompt (leave blank to use preset):**", lines=2 ) max_tokens = gr.Slider( minimum=1, maximum=8192, value=2048, step=1, label="**Max new tokens:**" ) temperature = gr.Slider( minimum=0.1, maximum=1.0, value=0.3, step=0.1, label="**Temperature:**" ) top_p = gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="**Top-P:**" ) # Set up the chat functionality def user(user_message, history): return "", history + [[user_message, None]] def bot( history, preset_prompt, custom_prompt, max_tokens, temperature, top_p, model_name ): history[-1][1] = "" for character in respond( history[-1][0], history[:-1], preset_prompt, custom_prompt, max_tokens, temperature, top_p, model_name ): history[-1][1] = character yield history msg.submit( user, [msg, chatbot], [msg, chatbot], queue=False ).then( bot, [chatbot, preset_prompt, custom_prompt, max_tokens, temperature, top_p, model_dropdown], chatbot ) clear.click(lambda: None, None, chatbot, queue=False) print("Gradio interface initialized.") if __name__ == "__main__": print("Launching the demo application.") demo.launch()