assignment2_testing / app.py.py
23b719w's picture
Upload app.py.py
788004e
raw
history blame
5.64 kB
import matplotlib.pyplot as plt
import numpy as np
from six import BytesIO
from PIL import Image
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as viz_utils
from object_detection.utils import ops as utils_op
import tarfile
import wget
import gradio as gr
from huggingface_hub import snapshot_download
import os
import matplotlib.pyplot as plt
from tqdm import tqdm
import cv2
PATH_TO_LABELS = 'data/label_map.pbtxt'
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
def pil_image_as_numpy_array(pilimg):
img_array = tf.keras.utils.img_to_array(pilimg)
img_array = np.expand_dims(img_array, axis=0)
return img_array
def load_image_into_numpy_array(path):
image = None
image_data = tf.io.gfile.GFile(path, 'rb').read()
image = Image.open(BytesIO(image_data))
return pil_image_as_numpy_array(image)
def load_model():
download_dir = snapshot_download(REPO_ID)
saved_model_dir = os.path.join(download_dir, "saved_model")
detection_model = tf.saved_model.load(saved_model_dir)
return detection_model
def load_model2():
wget.download("https://nyp-aicourse.s3-ap-southeast-1.amazonaws.com/pretrained-models/balloon_model.tar.gz")
tarfile.open("balloon_model.tar.gz").extractall()
model_dir = 'saved_model'
detection_model = tf.saved_model.load(str(model_dir))
return detection_model
threshold = 0.50
def predict(pilimg,video_in_filepath,threshold):
image_np = pil_image_as_numpy_array(pilimg)
return predict2(image_np,threshold),None
def predict2(image_np,threshold):
results = detection_model(image_np)
# different object detection models have additional results
result = {key:value.numpy() for key,value in results.items()}
label_id_offset = 0
image_np_with_detections = image_np.copy()
viz_utils.visualize_boxes_and_labels_on_image_array(
image_np_with_detections[0],
result['detection_boxes'][0],
(result['detection_classes'][0] + label_id_offset).astype(int),
result['detection_scores'][0],
category_index,
use_normalized_coordinates=True,
max_boxes_to_draw=200,
min_score_thresh=float(threshold),
agnostic_mode=False,
line_thickness=2)
result_pil_img = tf.keras.utils.array_to_img(image_np_with_detections[0])
return result_pil_img
label_id_offset = 0
samples_folder = 'test_samples'
# image_path = 'test_samples/image489.png'
def video_fn(video_reader):
#video_reader = cv2.VideoCapture(video_in_filepath)
nb_frames = int(video_reader.get(cv2.CAP_PROP_FRAME_COUNT))
frame_h = int(video_reader.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_w = int(video_reader.get(cv2.CAP_PROP_FRAME_WIDTH))
fps = video_reader.get(cv2.CAP_PROP_FPS)
video_out_filepath = 'detected.mp4'
video_writer = cv2.VideoWriter(video_out_filepath,
cv2.VideoWriter_fourcc(*'mp4v'),
fps,
(frame_w, frame_h))
for i in tqdm(range(nb_frames)):
ret, image_np = video_reader.read()
input_tensor = tf.convert_to_tensor(np.expand_dims(image_np, 0), dtype=tf.uint8)
results = detection_model(input_tensor)
viz_utils.visualize_boxes_and_labels_on_image_array(
image_np,
results['detection_boxes'][0].numpy(),
(results['detection_classes'][0].numpy()+ label_id_offset).astype(int),
results['detection_scores'][0].numpy(),
category_index,
use_normalized_coordinates=True,
max_boxes_to_draw=200,
min_score_thresh=.50,
agnostic_mode=False,
line_thickness=2)
video_writer.write(np.uint8(image_np))
# Release camera and close windows
video_reader.release()
video_writer.release()
cv2.destroyAllWindows()
cv2.waitKey(1)
return video_writer
REPO_ID = "23b719w/assignment2_tfodmodel"
detection_model = load_model()
# pil_image = Image.open(image_path)
# image_arr = pil_image_as_numpy_array(pil_image)
# predicted_img = predict(image_arr)
# predicted_img.save('predicted.jpg')
# gr.Interface(fn=predict,
# inputs=[gr.Image(type="pil",label="Input Image"),gr.Video(label="Input Video"),gr.Textbox(placeholder="0.50",label="Set the confidence threshold (0.00-1.00)")],
# outputs=[gr.Image(type="pil",label="Output Image"),gr.Video(label="Output Video")],
# title="Facemask & Glasses",
# description="Model: ssd_mobilenet_v2_320x320",
# theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
# examples=[["test_samples/image489.png","",0.55], ["test_samples/image825.png","",0.55], ["test_samples/image833.png","",0.55], ["test_samples/image846.png","",0.55]]
# ).launch(share=True)
gr.Interface(fn=video_fn,
inputs=gr.Video(label="Input Video"),
outputs=gr.Video(label="Output Video"),
title="Facemask & Glasses",
description="Model: ssd_mobilenet_v2_320x320",
theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
examples="test_samples/test_video.mp4"
).launch(share=True)