Push LunarLander-v2 model
Browse files- README.md +1 -1
- config.json +1 -1
- ppp-LunarLander-v2.zip +2 -2
- ppp-LunarLander-v2/data +20 -20
- ppp-LunarLander-v2/policy.optimizer.pth +1 -1
- ppp-LunarLander-v2/policy.pth +1 -1
- ppp-LunarLander-v2/system_info.txt +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 234.54 +/- 68.22
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6d8613e9d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6d8613ea60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6d8613eaf0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6d8613eb80>", "_build": "<function ActorCriticPolicy._build at 0x7f6d8613ec10>", "forward": "<function ActorCriticPolicy.forward at 0x7f6d8613eca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6d8613ed30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6d8613edc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6d8613ee50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6d8613eee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6d8613ef70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6d86141040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6d8613dd40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680160109414668869, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAImSKL9pVGk9jickvwdgdL/rq1m+dCmDvgAAAAAAAAAATavZPYfZXT8KWHQ+Y2NDvyuBgDxK6Ag8AAAAAAAAAACzawo/xrffPi5XyD6u0o6/w52wPg27sboAAAAAAAAAAMMEiD7EACM+Cr1XPQRCVb+6BBc+ifW6vQAAAAAAAAAAMwuWvKneoj+WaQu+Ue3ovqzauTxmek65AAAAAAAAAACAqqA9/VJMP9KHLz6pXF2/ix5lvT1A0L0AAAAAAAAAALPmsj2cl4A/8kiLvQT4N7/JzLE+m/BSPQAAAAAAAAAA/c62PkmVOT8dmCM/t0lIv3n2Mj5WxG8+AAAAAAAAAADLGdy+L+kLPy6a674baFi/RICIvva1+70AAAAAAAAAAM0Qzr6wN6Q/AvMRv29OGr9I1ze+EF7GvAAAAAAAAAAA0OdsvtDQ4T64mqi9pnhMvytW6L6FYga+AAAAAAAAAAAq86M+8iQtPsL7yz4FvlC/jWQpPMp4TT0AAAAAAAAAAObOf77JIj4/GOR2vjs1VL+iAuW+L/EBPAAAAAAAAAAAmqievMUpvj8LO3u+dm6uPvImPDzNvs03AAAAAAAAAAAg6A4+7SI4P+v/TD6HPUG/ej4hPqg8Cj4AAAAAAAAAAJXk477XsfQ+stzFvWVMZb996tS+GicAPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIY5eo3hrIXMCUhpRSlIwBbJRLiYwBdJRHQHnukfHPu5V1fZQoaAZoCWgPQwg/pyA/G7FawJSGlFKUaBVLY2gWR0B57vi2lVLjdX2UKGgGaAloD0MIt39lpUn1RMCUhpRSlGgVS3FoFkdAee8e67NB4XV9lChoBmgJaA9DCJGdt7HZ217AlIaUUpRoFUtuaBZHQHnvKmXPZ7J1fZQoaAZoCWgPQwhPB7KeWu0kwJSGlFKUaBVLVmgWR0B58BiobXHzdX2UKGgGaAloD0MIdLaA0HrkSsCUhpRSlGgVS3loFkdAefAFH8TBZnV9lChoBmgJaA9DCBZLkXwlIlTAlIaUUpRoFUtQaBZHQHnwsYMvysl1fZQoaAZoCWgPQwiGcMyyJ/kzwJSGlFKUaBVLS2gWR0B58lsDW9UTdX2UKGgGaAloD0MIqrhxi/ntPsCUhpRSlGgVS31oFkdAefLTER8MNXV9lChoBmgJaA9DCOVEuwopTULAlIaUUpRoFUtxaBZHQHnzD238XN11fZQoaAZoCWgPQwheaRmp91FVwJSGlFKUaBVLbWgWR0B583IEKVpsdX2UKGgGaAloD0MIINWw3xMUWMCUhpRSlGgVS35oFkdAefNz+3pfQnV9lChoBmgJaA9DCOS+1TpxYUPAlIaUUpRoFUt0aBZHQHnzdV7x/d91fZQoaAZoCWgPQwifBDbn4MBXwJSGlFKUaBVLnWgWR0B587tJFspHdX2UKGgGaAloD0MI1VktsMdcVMCUhpRSlGgVS1RoFkdAefQ0ojOcD3V9lChoBmgJaA9DCNofKLdt2mLAlIaUUpRoFUtwaBZHQHn0ZbhWHUN1fZQoaAZoCWgPQwhD5V/LKwVLwJSGlFKUaBVLg2gWR0B59NITXarWdX2UKGgGaAloD0MIIenTKvqNTcCUhpRSlGgVS1JoFkdAefa+7UXpGHV9lChoBmgJaA9DCOlkqfV+0VHAlIaUUpRoFUtwaBZHQHn49EofCAN1fZQoaAZoCWgPQwjQ1VbsL7lIwJSGlFKUaBVLemgWR0B5+XVjI7vHdX2UKGgGaAloD0MIiIOEKF+JXMCUhpRSlGgVS2ZoFkdAefn3I+4b0nV9lChoBmgJaA9DCNfBwd7EskPAlIaUUpRoFUuDaBZHQHn6M7dSEUV1fZQoaAZoCWgPQwgEyNCxgwRNwJSGlFKUaBVLVmgWR0B5+mNjslcAdX2UKGgGaAloD0MIbvdynxxAWsCUhpRSlGgVS3poFkdAefqP4VRDTnV9lChoBmgJaA9DCKXz4VmCMEjAlIaUUpRoFUtPaBZHQHn65emelKt1fZQoaAZoCWgPQwjirfNvl0FGwJSGlFKUaBVLVmgWR0B5+1ivxH5KdX2UKGgGaAloD0MIMGMK1jjPTcCUhpRSlGgVS2NoFkdAefx1n/T9bXV9lChoBmgJaA9DCD+QvHMo/1DAlIaUUpRoFUtyaBZHQHn9MNUfgaZ1fZQoaAZoCWgPQwhgyVUsfmlKwJSGlFKUaBVLYGgWR0B5/VAzHjp+dX2UKGgGaAloD0MI1edqK/ZdTcCUhpRSlGgVS4BoFkdAef2WGh24eHV9lChoBmgJaA9DCD+PUZ55AUrAlIaUUpRoFUtyaBZHQHn+HD3ueBh1fZQoaAZoCWgPQwjxhF5/EnNAwJSGlFKUaBVLYmgWR0B5/od3jdYXdX2UKGgGaAloD0MImIkipG7ZWcCUhpRSlGgVS3VoFkdAef5yTINmUXV9lChoBmgJaA9DCBah2AqaIVHAlIaUUpRoFUuNaBZHQHn+xMvh60J1fZQoaAZoCWgPQwgJ/reSHclUwJSGlFKUaBVLTmgWR0B5/sFzMibEdX2UKGgGaAloD0MIVrsmpDXeU8CUhpRSlGgVS1xoFkdAef83ZPEbYXV9lChoBmgJaA9DCCWzeofbSUzAlIaUUpRoFUtRaBZHQHoARxo7FKl1fZQoaAZoCWgPQwhCCp5Crt5TwJSGlFKUaBVLZGgWR0B6AJRvWH1wdX2UKGgGaAloD0MIQu4iTFGyW8CUhpRSlGgVS2NoFkdAegEXmeUY9HV9lChoBmgJaA9DCIZwzLInkFHAlIaUUpRoFUtgaBZHQHoCLt/nW8R1fZQoaAZoCWgPQwhkr3d/vKFJwJSGlFKUaBVLgGgWR0B6BTIyTINmdX2UKGgGaAloD0MIG/Sltz8vSsCUhpRSlGgVS1xoFkdAegWuPFNtZXV9lChoBmgJaA9DCODW3TzVYSHAlIaUUpRoFUtMaBZHQHoGBXKbKA91fZQoaAZoCWgPQwhCYOXQIkFAwJSGlFKUaBVLUWgWR0B6BjO9nK4hdX2UKGgGaAloD0MIMnIW9rTUVcCUhpRSlGgVS5RoFkdAegZbS7Xg+HV9lChoBmgJaA9DCKoM424QpULAlIaUUpRoFUtraBZHQHoGtWU8mrt1fZQoaAZoCWgPQwhDcjJxq8g+wJSGlFKUaBVLgGgWR0B6B0J6Y3NtdX2UKGgGaAloD0MIt7jGZ7JFRcCUhpRSlGgVS2JoFkdAegdoVVPva3V9lChoBmgJaA9DCILn3sMlcVTAlIaUUpRoFUtzaBZHQHoHdATqSox1fZQoaAZoCWgPQwiT36KTpdxKwJSGlFKUaBVLYGgWR0B6B6IqLCN0dX2UKGgGaAloD0MItABtq1kNQ8CUhpRSlGgVS3NoFkdAegfgsbvPT3V9lChoBmgJaA9DCPuT+NwJaVPAlIaUUpRoFUtzaBZHQHoIH2/SH/N1fZQoaAZoCWgPQwgbn8n+eQ9QwJSGlFKUaBVLVWgWR0B6CE55qubJdX2UKGgGaAloD0MIhNbDl4mnU8CUhpRSlGgVS0RoFkdAeglPFNtZWHV9lChoBmgJaA9DCGSV0jO96DbAlIaUUpRoFUtoaBZHQHoKctK7I1d1fZQoaAZoCWgPQwiOyHcpdTxTwJSGlFKUaBVLWWgWR0B6CwBQvYe1dX2UKGgGaAloD0MIjbeVXpuTUcCUhpRSlGgVS1VoFkdAegtlJ6IFeXV9lChoBmgJaA9DCJ8dcF0xs1HAlIaUUpRoFUuAaBZHQHoLW912aDx1fZQoaAZoCWgPQwi6aTNOQ/1UwJSGlFKUaBVLYWgWR0B6DANy5qdpdX2UKGgGaAloD0MIt9WsM77/H8CUhpRSlGgVS59oFkdAegx+qR2bG3V9lChoBmgJaA9DCBNjmX6J5EzAlIaUUpRoFUtcaBZHQHoM890Rvm51fZQoaAZoCWgPQwiCGylbJF1ZwJSGlFKUaBVLUGgWR0B6DSb2Dg62dX2UKGgGaAloD0MI1Xd+UYLoT8CUhpRSlGgVS3poFkdAeg1gDRtxdnV9lChoBmgJaA9DCGFu93Kf9EbAlIaUUpRoFUtoaBZHQHoNgmE4//x1fZQoaAZoCWgPQwjrcHSV7sxGwJSGlFKUaBVLcmgWR0B6DZCu2Zy/dX2UKGgGaAloD0MIa/EpAMabTsCUhpRSlGgVS2toFkdAeg8YzBRAKXV9lChoBmgJaA9DCIKRlzWxoEfAlIaUUpRoFUuHaBZHQHoQdihFmWd1fZQoaAZoCWgPQwhqpnud1DNgwJSGlFKUaBVLamgWR0B6EYaMrEtNdX2UKGgGaAloD0MIHXV0XI20TcCUhpRSlGgVS4doFkdAehIqm0mdAnV9lChoBmgJaA9DCLXf2omSqkfAlIaUUpRoFUtMaBZHQHoSNkz41xd1fZQoaAZoCWgPQwgPRYE+keM5wJSGlFKUaBVLU2gWR0B6E5DKHO8kdX2UKGgGaAloD0MITYQNT6/EK8CUhpRSlGgVS6FoFkdAehPnJkoWpXV9lChoBmgJaA9DCC49murJIE7AlIaUUpRoFUtoaBZHQHoUUKeCkGl1fZQoaAZoCWgPQwg8Ei9P57ZQwJSGlFKUaBVLTGgWR0B6FK0D2alUdX2UKGgGaAloD0MI9G4sKAxMQcCUhpRSlGgVS0loFkdAehSRhc7henV9lChoBmgJaA9DCBGQL6GC5UzAlIaUUpRoFUtQaBZHQHoUzXOGCZp1fZQoaAZoCWgPQwjyIhPwa1RBwJSGlFKUaBVLgGgWR0B6FN8E3bVSdX2UKGgGaAloD0MIaxFRTN6oKECUhpRSlGgVS2JoFkdAehUIatLcsXV9lChoBmgJaA9DCLZmKy/5hFXAlIaUUpRoFUuFaBZHQHoVpjtoi9t1fZQoaAZoCWgPQwjLoNrgRLwqwJSGlFKUaBVLaGgWR0B6Fc86mwaBdX2UKGgGaAloD0MIP+QtVz/CTsCUhpRSlGgVS1JoFkdAehYPWxyGSXV9lChoBmgJaA9DCB0AcVevFFTAlIaUUpRoFUt7aBZHQHoXCMHbAUN1fZQoaAZoCWgPQwi+EkiJXWdDwJSGlFKUaBVLV2gWR0B6GNSXMQmNdX2UKGgGaAloD0MI22/tREnuVsCUhpRSlGgVS2hoFkdAehjTrE9+w3V9lChoBmgJaA9DCLDFbp9VGE/AlIaUUpRoFUtzaBZHQHoZCBK+SKZ1fZQoaAZoCWgPQwg+PEuQEcRPwJSGlFKUaBVLSWgWR0B6GTRSgoPTdX2UKGgGaAloD0MICcbBpWMOT8CUhpRSlGgVS0ZoFkdAehlDJlrdnHV9lChoBmgJaA9DCEpGzsKeXVPAlIaUUpRoFUtUaBZHQHoZa8lHBk91fZQoaAZoCWgPQwjjw+xl2/0wwJSGlFKUaBVLUmgWR0B6GYsFt8/mdX2UKGgGaAloD0MIFqJD4Eh2UsCUhpRSlGgVS15oFkdAehmi704BFXV9lChoBmgJaA9DCDuoxHWMElPAlIaUUpRoFUtUaBZHQHoZzb8FY+11fZQoaAZoCWgPQwh63/jaM8c6wJSGlFKUaBVLhWgWR0B6Gp/I8yN5dX2UKGgGaAloD0MIW7VrQlrRS8CUhpRSlGgVS1VoFkdAehr0mtyPuHV9lChoBmgJaA9DCHk8LT9wPVTAlIaUUpRoFUtpaBZHQHobLyhBZ6l1fZQoaAZoCWgPQwjCacGLvt5NwJSGlFKUaBVLWmgWR0B6Gx//echDdX2UKGgGaAloD0MITBqjdVQlRsCUhpRSlGgVS0doFkdAehtwKBun/HV9lChoBmgJaA9DCMamlUIgYFfAlIaUUpRoFUtYaBZHQHobb5AQg9x1fZQoaAZoCWgPQwjLSpNS0Ok5wJSGlFKUaBVLn2gWR0B6G+jtXxOMdX2UKGgGaAloD0MIUFPL1vrkTMCUhpRSlGgVS1ZoFkdAeh5C3w1BMXV9lChoBmgJaA9DCLPSpBR0myLAlIaUUpRoFUtfaBZHQHoefUKArhB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8b1631ca60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8b1631caf0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8b1631cb80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8b1631cc10>", "_build": "<function ActorCriticPolicy._build at 0x7f8b1631cca0>", "forward": "<function ActorCriticPolicy.forward at 0x7f8b1631cd30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8b1631cdc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8b1631ce50>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8b1631cee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8b1631cf70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8b16324040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8b163240d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8b16322cc0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1310720, "_total_timesteps": 1300000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680592071942743431, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIAYtj3DeTS6FJqouB8mP7Qit4w7Y4/DNwAAgD8AAIA/TUVEvTwtKD9L3OY8YgaEvsTT0LoUcZG6AAAAAAAAAAAzl4C94YCsugbfSzet/jMyJczHuYI8arYAAIA/AACAP0DSt70paFq6zdTmOilrxzWj6QY2D9YHugAAAAAAAIA/ZtcWPeFkkrpztWE7a3UHOAAh1bobhRm6AACAPwAAgD/NO7g8exq2urpdvrrhWAO2PuMyObhN2TkAAIA/AACAP2ZmczuQzZ8/aL1MvffGrr4Ma9W7SpmIvAAAAAAAAAAAQBq9Pid+Zz90vqM9EKuTvse/MT5J2IC8AAAAAAAAAACAybG9j44buv82SbqXUk427DaWu3bHbzgAAIA/AACAP5oDRjx7Cpm6b6sUud4v+bOOOqg6Hl0rOAAAgD8AAIA/ZtLKPMOZbro2I6U6V3mGNXQ/qjpiLsG5AACAPwAAgD+m8+q9H4XlOHYADzyFi226lVkSvCD0UDsAAIA/AACAPwDG/7zDQXK62A0eOKufxTE4AhA5O1Q2twAAgD8AAIA/AFOyPFyHbLp8Sp86ok8bNoRMCTuZXra5AACAPwAAgD8zMJI8rl2eurj8ZbvqGrU2bWonOVlvIrYAAIA/AACAPzMVq7326Hq4W7+GO6uUfzjg7Ba8dXjkuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.008246153846153792, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4NbdPFXKY0CUhpRSlIwBbJRN6AOMAXSUR0Caxdl+EytWdX2UKGgGaAloD0MI71cBvltXY0CUhpRSlGgVTegDaBZHQJrLB20Re1N1fZQoaAZoCWgPQwiI1/ULdrVjQJSGlFKUaBVN6ANoFkdAmsv1CswL3XV9lChoBmgJaA9DCE7v4v048WBAlIaUUpRoFU3oA2gWR0CazSJRO1v3dX2UKGgGaAloD0MIw5s1eF9JY0CUhpRSlGgVTegDaBZHQJrRFBdD6WR1fZQoaAZoCWgPQwgziuWWVhJlQJSGlFKUaBVN6ANoFkdAmt6k6gdwN3V9lChoBmgJaA9DCHhCrz+J2mRAlIaUUpRoFU3oA2gWR0Ca7agyM1jzdX2UKGgGaAloD0MIAfinVAkeYUCUhpRSlGgVTegDaBZHQJruHnvDxb11fZQoaAZoCWgPQwiX/5B+e6NjQJSGlFKUaBVN6ANoFkdAmwK/P5YYBXV9lChoBmgJaA9DCAkbnl6pQWFAlIaUUpRoFU3oA2gWR0CbA8r8zhxYdX2UKGgGaAloD0MI0egOYmdoXUCUhpRSlGgVTegDaBZHQJsHN5zHS4R1fZQoaAZoCWgPQwgPDvYmhptjQJSGlFKUaBVN6ANoFkdAmwiXnEETx3V9lChoBmgJaA9DCIeIm1NJqmVAlIaUUpRoFU3oA2gWR0CbC7Gx2SuAdX2UKGgGaAloD0MI76mc9hRIZkCUhpRSlGgVTegDaBZHQJsNUM2FWXF1fZQoaAZoCWgPQwgjpG5n3x1kQJSGlFKUaBVN6ANoFkdAmw41J+UhV3V9lChoBmgJaA9DCOBkG7gDIWVAlIaUUpRoFU3oA2gWR0CbF6UD+zdDdX2UKGgGaAloD0MIV8wIb4/AaECUhpRSlGgVTegDaBZHQJsbtdD6WPd1fZQoaAZoCWgPQwgC8iVUcGFTQJSGlFKUaBVL+mgWR0CbG8JEpiI+dX2UKGgGaAloD0MI58Qe2scKJ0CUhpRSlGgVS/poFkdAmx5CrDIiknV9lChoBmgJaA9DCNqSVRFuP2VAlIaUUpRoFU3oA2gWR0CbIgrXUYsNdX2UKGgGaAloD0MInzws1BrjZECUhpRSlGgVTegDaBZHQJsjLdxhlUZ1fZQoaAZoCWgPQwiKj0/IToloQJSGlFKUaBVN6ANoFkdAmySFV94NZ3V9lChoBmgJaA9DCNwODYvRfmJAlIaUUpRoFU3oA2gWR0CbJ+EKE385dX2UKGgGaAloD0MIll8GY0R6RkCUhpRSlGgVTQkBaBZHQJstqmrKeTV1fZQoaAZoCWgPQwjNV8nHbnplQJSGlFKUaBVN6ANoFkdAmzHWSZBsynV9lChoBmgJaA9DCAd6qG3D919AlIaUUpRoFU3oA2gWR0CbPEm3OObRdX2UKGgGaAloD0MIn69ZLhsTYECUhpRSlGgVTegDaBZHQJs8rDQ7cO91fZQoaAZoCWgPQwh97C5Q0sthQJSGlFKUaBVN6ANoFkdAm0AHQhOgx3V9lChoBmgJaA9DCFjJx+4CN2NAlIaUUpRoFU3oA2gWR0CbQPkt29tedX2UKGgGaAloD0MIiuYBLHKuYECUhpRSlGgVTegDaBZHQJtY0Ma0hNd1fZQoaAZoCWgPQwjo9SfxOe1iQJSGlFKUaBVN6ANoFkdAm1rTltCRfXV9lChoBmgJaA9DCK66DtWUr1NAlIaUUpRoFUvvaBZHQJtgYd7v5QB1fZQoaAZoCWgPQwjZmNcRh2hjQJSGlFKUaBVN6ANoFkdAm2GpFTefqXV9lChoBmgJaA9DCPiJA+h3bGdAlIaUUpRoFU3oA2gWR0CbaWNx2jfvdX2UKGgGaAloD0MIhQX3A57sYUCUhpRSlGgVTegDaBZHQJtsCZZ0Syt1fZQoaAZoCWgPQwg1fXbAdcNfQJSGlFKUaBVN6ANoFkdAm2wPhQ3xWnV9lChoBmgJaA9DCKndrwJ8M11AlIaUUpRoFU3oA2gWR0CbcBMibDuSdX2UKGgGaAloD0MIyXISSl8EaECUhpRSlGgVTegDaBZHQJtw014xDb91fZQoaAZoCWgPQwjdeeI5WxRkQJSGlFKUaBVN6ANoFkdAm3HLhaTwD3V9lChoBmgJaA9DCFGgT+RJmGJAlIaUUpRoFU3oA2gWR0CbdSiBoVVQdX2UKGgGaAloD0MIpUv/klQ3Y0CUhpRSlGgVTegDaBZHQJt7VR3u/lB1fZQoaAZoCWgPQwhJoMGmTthjQJSGlFKUaBVN6ANoFkdAm3/bQokRjHV9lChoBmgJaA9DCFkw8UfRjWVAlIaUUpRoFU3oA2gWR0CbjJZamoBJdX2UKGgGaAloD0MICCC1iRN5ZUCUhpRSlGgVTegDaBZHQJuRnjbSJCV1fZQoaAZoCWgPQwg83XniOcFkQJSGlFKUaBVN6ANoFkdAm5M5S75EdHV9lChoBmgJaA9DCIuqX+l8ymFAlIaUUpRoFU3oA2gWR0CbqbrDqGDddX2UKGgGaAloD0MI6fF7m35yaECUhpRSlGgVTegDaBZHQJurT0cwQDp1fZQoaAZoCWgPQwhcH9YbNc9jQJSGlFKUaBVN6ANoFkdAm7BxJ/XoT3V9lChoBmgJaA9DCJYFE38UdmdAlIaUUpRoFU3oA2gWR0CbsdlI3BHkdX2UKGgGaAloD0MIo8haQykfZECUhpRSlGgVTegDaBZHQJu6wYm9g4R1fZQoaAZoCWgPQwhd+pekMjFfQJSGlFKUaBVN6ANoFkdAm73h5ooNNXV9lChoBmgJaA9DCHEEqRS7u2VAlIaUUpRoFU3oA2gWR0Cbveklu3tsdX2UKGgGaAloD0MIh78ma9SaZkCUhpRSlGgVTegDaBZHQJvDaJtSAH51fZQoaAZoCWgPQwh1IsFUM15nQJSGlFKUaBVN6ANoFkdAm8SqVY6nznV9lChoBmgJaA9DCNlD+1hBYWZAlIaUUpRoFU3oA2gWR0CbxiZEDyOJdX2UKGgGaAloD0MI/FbrxGWxZUCUhpRSlGgVTegDaBZHQJvLNDXvphZ1fZQoaAZoCWgPQwhW0opvqHJiQJSGlFKUaBVN6ANoFkdAm9P1V1fVqnV9lChoBmgJaA9DCPz+zYsT9WNAlIaUUpRoFU3oA2gWR0Cb2ENMXaakdX2UKGgGaAloD0MIIQVPIddbbkCUhpRSlGgVTfICaBZHQJvbNFx4ptt1fZQoaAZoCWgPQwifceFAyOFkQJSGlFKUaBVN6ANoFkdAm+KK0+kgwHV9lChoBmgJaA9DCOLkfociRmNAlIaUUpRoFU3oA2gWR0Cb5c+cYqG2dX2UKGgGaAloD0MIilsFMdBMZkCUhpRSlGgVTegDaBZHQJvmvd+G47R1fZQoaAZoCWgPQwjLaOTziqJjQJSGlFKUaBVN6ANoFkdAm/xyy+pOvnV9lChoBmgJaA9DCNJT5BDxFmRAlIaUUpRoFU3oA2gWR0CcArmjTKDDdX2UKGgGaAloD0MIelORCmMNZUCUhpRSlGgVTegDaBZHQJwEb1kDp1R1fZQoaAZoCWgPQwjd71AU6IJjQJSGlFKUaBVN6ANoFkdAnA+LNW2gF3V9lChoBmgJaA9DCNY1Wg50GWNAlIaUUpRoFU3oA2gWR0CcEmNwzch1dX2UKGgGaAloD0MIPZtVn6urY0CUhpRSlGgVTegDaBZHQJwSaVs1sLx1fZQoaAZoCWgPQwiDv1/MluFRQJSGlFKUaBVL02gWR0CcEwRm9QGfdX2UKGgGaAloD0MIJZaUu88IYkCUhpRSlGgVTegDaBZHQJwW0GbCrLh1fZQoaAZoCWgPQwiTNeohGtplQJSGlFKUaBVN6ANoFkdAnBefIGQjlnV9lChoBmgJaA9DCO1imuleN2JAlIaUUpRoFU3oA2gWR0CcGJearmyPdX2UKGgGaAloD0MI5dNjWwbdY0CUhpRSlGgVTegDaBZHQJwbpbkfcN91fZQoaAZoCWgPQwh7E0NyMoFkQJSGlFKUaBVN6ANoFkdAnCD1tj0+T3V9lChoBmgJaA9DCMN/uoGCVmRAlIaUUpRoFU3oA2gWR0CcJRAqd6LPdX2UKGgGaAloD0MIq3ZNSOv+YkCUhpRSlGgVTegDaBZHQJwoJG5MDfZ1fZQoaAZoCWgPQwj0p43q9GtpQJSGlFKUaBVN6ANoFkdAnC8IXfqHGnV9lChoBmgJaA9DCGJp4Ee1Q2JAlIaUUpRoFU3oA2gWR0CcMiG1x82KdX2UKGgGaAloD0MIndSXpR0DZ0CUhpRSlGgVTegDaBZHQJwzDUKArhB1fZQoaAZoCWgPQwhS8X9HVCAjQJSGlFKUaBVL4GgWR0CcNNz6rNnodX2UKGgGaAloD0MIxooaTEP6YkCUhpRSlGgVTegDaBZHQJxNkTfzjFR1fZQoaAZoCWgPQwgof/eOWllyQJSGlFKUaBVNxwJoFkdAnE8Vw97ngnV9lChoBmgJaA9DCFA25QpviGNAlIaUUpRoFU3oA2gWR0CcUd38XN1RdX2UKGgGaAloD0MIzJpY4Cs6IkCUhpRSlGgVS/JoFkdAnFJRYzSCv3V9lChoBmgJaA9DCJp9HqM8q1FAlIaUUpRoFUvnaBZHQJxW0wtapxZ1fZQoaAZoCWgPQwghdTv7Sg5jQJSGlFKUaBVN6ANoFkdAnFo+xjawlnV9lChoBmgJaA9DCL9J06DoqWJAlIaUUpRoFU3oA2gWR0CcXMJNCZ4OdX2UKGgGaAloD0MIOe6UDlZWY0CUhpRSlGgVTegDaBZHQJxcxutOmBR1fZQoaAZoCWgPQwjQRq6bUi4jQJSGlFKUaBVL7mgWR0CcXVbjcVQAdX2UKGgGaAloD0MI9S1zuizxZECUhpRSlGgVTegDaBZHQJxgHF+/gzh1fZQoaAZoCWgPQwiDpE+r6NNiQJSGlFKUaBVN6ANoFkdAnGC5uEVWS3V9lChoBmgJaA9DCO1FtB1TGmFAlIaUUpRoFU3oA2gWR0CcYXUoa1kUdX2UKGgGaAloD0MIrkm3JXLeZECUhpRSlGgVTegDaBZHQJxj9Bt1p0x1fZQoaAZoCWgPQwgTJ/c7FMdCQJSGlFKUaBVL8mgWR0CcZC4QBgeBdX2UKGgGaAloD0MI0jQomocdY0CUhpRSlGgVTegDaBZHQJxoSkep4r11fZQoaAZoCWgPQwhmwFlKlitlQJSGlFKUaBVN6ANoFkdAnGunLV4HHHV9lChoBmgJaA9DCP88DRgkC0pAlIaUUpRoFUvXaBZHQJxs5ufmLcd1fZQoaAZoCWgPQwgn2epySp9kQJSGlFKUaBVN6ANoFkdAnHnBUBGQS3V9lChoBmgJaA9DCF8HzhnRNmNAlIaUUpRoFU3oA2gWR0CcewmCyyD7dX2UKGgGaAloD0MI7IhDNpCgYkCUhpRSlGgVTegDaBZHQJyBWQaJhv11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 320, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppp-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da6c9d16e7f29108d70fd5c95d14c0e651d6829f5e5a6a44b8391639c3e3a8c6
|
3 |
+
size 147416
|
ppp-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -43,12 +43,12 @@
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
-
"num_timesteps":
|
47 |
-
"_total_timesteps":
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,7 +57,7 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -67,16 +67,16 @@
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
-
"_current_progress_remaining": -0.
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
-
"_n_updates":
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f8b1631ca60>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8b1631caf0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8b1631cb80>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8b1631cc10>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f8b1631cca0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f8b1631cd30>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8b1631cdc0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8b1631ce50>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f8b1631cee0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8b1631cf70>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8b16324040>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8b163240d0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f8b16322cc0>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
+
"num_timesteps": 1310720,
|
47 |
+
"_total_timesteps": 1300000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1680592071942743431,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIAYtj3DeTS6FJqouB8mP7Qit4w7Y4/DNwAAgD8AAIA/TUVEvTwtKD9L3OY8YgaEvsTT0LoUcZG6AAAAAAAAAAAzl4C94YCsugbfSzet/jMyJczHuYI8arYAAIA/AACAP0DSt70paFq6zdTmOilrxzWj6QY2D9YHugAAAAAAAIA/ZtcWPeFkkrpztWE7a3UHOAAh1bobhRm6AACAPwAAgD/NO7g8exq2urpdvrrhWAO2PuMyObhN2TkAAIA/AACAP2ZmczuQzZ8/aL1MvffGrr4Ma9W7SpmIvAAAAAAAAAAAQBq9Pid+Zz90vqM9EKuTvse/MT5J2IC8AAAAAAAAAACAybG9j44buv82SbqXUk427DaWu3bHbzgAAIA/AACAP5oDRjx7Cpm6b6sUud4v+bOOOqg6Hl0rOAAAgD8AAIA/ZtLKPMOZbro2I6U6V3mGNXQ/qjpiLsG5AACAPwAAgD+m8+q9H4XlOHYADzyFi226lVkSvCD0UDsAAIA/AACAPwDG/7zDQXK62A0eOKufxTE4AhA5O1Q2twAAgD8AAIA/AFOyPFyHbLp8Sp86ok8bNoRMCTuZXra5AACAPwAAgD8zMJI8rl2eurj8ZbvqGrU2bWonOVlvIrYAAIA/AACAPzMVq7326Hq4W7+GO6uUfzjg7Ba8dXjkuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.008246153846153792,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4NbdPFXKY0CUhpRSlIwBbJRN6AOMAXSUR0Caxdl+EytWdX2UKGgGaAloD0MI71cBvltXY0CUhpRSlGgVTegDaBZHQJrLB20Re1N1fZQoaAZoCWgPQwiI1/ULdrVjQJSGlFKUaBVN6ANoFkdAmsv1CswL3XV9lChoBmgJaA9DCE7v4v048WBAlIaUUpRoFU3oA2gWR0CazSJRO1v3dX2UKGgGaAloD0MIw5s1eF9JY0CUhpRSlGgVTegDaBZHQJrRFBdD6WR1fZQoaAZoCWgPQwgziuWWVhJlQJSGlFKUaBVN6ANoFkdAmt6k6gdwN3V9lChoBmgJaA9DCHhCrz+J2mRAlIaUUpRoFU3oA2gWR0Ca7agyM1jzdX2UKGgGaAloD0MIAfinVAkeYUCUhpRSlGgVTegDaBZHQJruHnvDxb11fZQoaAZoCWgPQwiX/5B+e6NjQJSGlFKUaBVN6ANoFkdAmwK/P5YYBXV9lChoBmgJaA9DCAkbnl6pQWFAlIaUUpRoFU3oA2gWR0CbA8r8zhxYdX2UKGgGaAloD0MI0egOYmdoXUCUhpRSlGgVTegDaBZHQJsHN5zHS4R1fZQoaAZoCWgPQwgPDvYmhptjQJSGlFKUaBVN6ANoFkdAmwiXnEETx3V9lChoBmgJaA9DCIeIm1NJqmVAlIaUUpRoFU3oA2gWR0CbC7Gx2SuAdX2UKGgGaAloD0MI76mc9hRIZkCUhpRSlGgVTegDaBZHQJsNUM2FWXF1fZQoaAZoCWgPQwgjpG5n3x1kQJSGlFKUaBVN6ANoFkdAmw41J+UhV3V9lChoBmgJaA9DCOBkG7gDIWVAlIaUUpRoFU3oA2gWR0CbF6UD+zdDdX2UKGgGaAloD0MIV8wIb4/AaECUhpRSlGgVTegDaBZHQJsbtdD6WPd1fZQoaAZoCWgPQwgC8iVUcGFTQJSGlFKUaBVL+mgWR0CbG8JEpiI+dX2UKGgGaAloD0MI58Qe2scKJ0CUhpRSlGgVS/poFkdAmx5CrDIiknV9lChoBmgJaA9DCNqSVRFuP2VAlIaUUpRoFU3oA2gWR0CbIgrXUYsNdX2UKGgGaAloD0MInzws1BrjZECUhpRSlGgVTegDaBZHQJsjLdxhlUZ1fZQoaAZoCWgPQwiKj0/IToloQJSGlFKUaBVN6ANoFkdAmySFV94NZ3V9lChoBmgJaA9DCNwODYvRfmJAlIaUUpRoFU3oA2gWR0CbJ+EKE385dX2UKGgGaAloD0MIll8GY0R6RkCUhpRSlGgVTQkBaBZHQJstqmrKeTV1fZQoaAZoCWgPQwjNV8nHbnplQJSGlFKUaBVN6ANoFkdAmzHWSZBsynV9lChoBmgJaA9DCAd6qG3D919AlIaUUpRoFU3oA2gWR0CbPEm3OObRdX2UKGgGaAloD0MIn69ZLhsTYECUhpRSlGgVTegDaBZHQJs8rDQ7cO91fZQoaAZoCWgPQwh97C5Q0sthQJSGlFKUaBVN6ANoFkdAm0AHQhOgx3V9lChoBmgJaA9DCFjJx+4CN2NAlIaUUpRoFU3oA2gWR0CbQPkt29tedX2UKGgGaAloD0MIiuYBLHKuYECUhpRSlGgVTegDaBZHQJtY0Ma0hNd1fZQoaAZoCWgPQwjo9SfxOe1iQJSGlFKUaBVN6ANoFkdAm1rTltCRfXV9lChoBmgJaA9DCK66DtWUr1NAlIaUUpRoFUvvaBZHQJtgYd7v5QB1fZQoaAZoCWgPQwjZmNcRh2hjQJSGlFKUaBVN6ANoFkdAm2GpFTefqXV9lChoBmgJaA9DCPiJA+h3bGdAlIaUUpRoFU3oA2gWR0CbaWNx2jfvdX2UKGgGaAloD0MIhQX3A57sYUCUhpRSlGgVTegDaBZHQJtsCZZ0Syt1fZQoaAZoCWgPQwg1fXbAdcNfQJSGlFKUaBVN6ANoFkdAm2wPhQ3xWnV9lChoBmgJaA9DCKndrwJ8M11AlIaUUpRoFU3oA2gWR0CbcBMibDuSdX2UKGgGaAloD0MIyXISSl8EaECUhpRSlGgVTegDaBZHQJtw014xDb91fZQoaAZoCWgPQwjdeeI5WxRkQJSGlFKUaBVN6ANoFkdAm3HLhaTwD3V9lChoBmgJaA9DCFGgT+RJmGJAlIaUUpRoFU3oA2gWR0CbdSiBoVVQdX2UKGgGaAloD0MIpUv/klQ3Y0CUhpRSlGgVTegDaBZHQJt7VR3u/lB1fZQoaAZoCWgPQwhJoMGmTthjQJSGlFKUaBVN6ANoFkdAm3/bQokRjHV9lChoBmgJaA9DCFkw8UfRjWVAlIaUUpRoFU3oA2gWR0CbjJZamoBJdX2UKGgGaAloD0MICCC1iRN5ZUCUhpRSlGgVTegDaBZHQJuRnjbSJCV1fZQoaAZoCWgPQwg83XniOcFkQJSGlFKUaBVN6ANoFkdAm5M5S75EdHV9lChoBmgJaA9DCIuqX+l8ymFAlIaUUpRoFU3oA2gWR0CbqbrDqGDddX2UKGgGaAloD0MI6fF7m35yaECUhpRSlGgVTegDaBZHQJurT0cwQDp1fZQoaAZoCWgPQwhcH9YbNc9jQJSGlFKUaBVN6ANoFkdAm7BxJ/XoT3V9lChoBmgJaA9DCJYFE38UdmdAlIaUUpRoFU3oA2gWR0CbsdlI3BHkdX2UKGgGaAloD0MIo8haQykfZECUhpRSlGgVTegDaBZHQJu6wYm9g4R1fZQoaAZoCWgPQwhd+pekMjFfQJSGlFKUaBVN6ANoFkdAm73h5ooNNXV9lChoBmgJaA9DCHEEqRS7u2VAlIaUUpRoFU3oA2gWR0Cbveklu3tsdX2UKGgGaAloD0MIh78ma9SaZkCUhpRSlGgVTegDaBZHQJvDaJtSAH51fZQoaAZoCWgPQwh1IsFUM15nQJSGlFKUaBVN6ANoFkdAm8SqVY6nznV9lChoBmgJaA9DCNlD+1hBYWZAlIaUUpRoFU3oA2gWR0CbxiZEDyOJdX2UKGgGaAloD0MI/FbrxGWxZUCUhpRSlGgVTegDaBZHQJvLNDXvphZ1fZQoaAZoCWgPQwhW0opvqHJiQJSGlFKUaBVN6ANoFkdAm9P1V1fVqnV9lChoBmgJaA9DCPz+zYsT9WNAlIaUUpRoFU3oA2gWR0Cb2ENMXaakdX2UKGgGaAloD0MIIQVPIddbbkCUhpRSlGgVTfICaBZHQJvbNFx4ptt1fZQoaAZoCWgPQwifceFAyOFkQJSGlFKUaBVN6ANoFkdAm+KK0+kgwHV9lChoBmgJaA9DCOLkfociRmNAlIaUUpRoFU3oA2gWR0Cb5c+cYqG2dX2UKGgGaAloD0MIilsFMdBMZkCUhpRSlGgVTegDaBZHQJvmvd+G47R1fZQoaAZoCWgPQwjLaOTziqJjQJSGlFKUaBVN6ANoFkdAm/xyy+pOvnV9lChoBmgJaA9DCNJT5BDxFmRAlIaUUpRoFU3oA2gWR0CcArmjTKDDdX2UKGgGaAloD0MIelORCmMNZUCUhpRSlGgVTegDaBZHQJwEb1kDp1R1fZQoaAZoCWgPQwjd71AU6IJjQJSGlFKUaBVN6ANoFkdAnA+LNW2gF3V9lChoBmgJaA9DCNY1Wg50GWNAlIaUUpRoFU3oA2gWR0CcEmNwzch1dX2UKGgGaAloD0MIPZtVn6urY0CUhpRSlGgVTegDaBZHQJwSaVs1sLx1fZQoaAZoCWgPQwiDv1/MluFRQJSGlFKUaBVL02gWR0CcEwRm9QGfdX2UKGgGaAloD0MIJZaUu88IYkCUhpRSlGgVTegDaBZHQJwW0GbCrLh1fZQoaAZoCWgPQwiTNeohGtplQJSGlFKUaBVN6ANoFkdAnBefIGQjlnV9lChoBmgJaA9DCO1imuleN2JAlIaUUpRoFU3oA2gWR0CcGJearmyPdX2UKGgGaAloD0MI5dNjWwbdY0CUhpRSlGgVTegDaBZHQJwbpbkfcN91fZQoaAZoCWgPQwh7E0NyMoFkQJSGlFKUaBVN6ANoFkdAnCD1tj0+T3V9lChoBmgJaA9DCMN/uoGCVmRAlIaUUpRoFU3oA2gWR0CcJRAqd6LPdX2UKGgGaAloD0MIq3ZNSOv+YkCUhpRSlGgVTegDaBZHQJwoJG5MDfZ1fZQoaAZoCWgPQwj0p43q9GtpQJSGlFKUaBVN6ANoFkdAnC8IXfqHGnV9lChoBmgJaA9DCGJp4Ee1Q2JAlIaUUpRoFU3oA2gWR0CcMiG1x82KdX2UKGgGaAloD0MIndSXpR0DZ0CUhpRSlGgVTegDaBZHQJwzDUKArhB1fZQoaAZoCWgPQwhS8X9HVCAjQJSGlFKUaBVL4GgWR0CcNNz6rNnodX2UKGgGaAloD0MIxooaTEP6YkCUhpRSlGgVTegDaBZHQJxNkTfzjFR1fZQoaAZoCWgPQwgof/eOWllyQJSGlFKUaBVNxwJoFkdAnE8Vw97ngnV9lChoBmgJaA9DCFA25QpviGNAlIaUUpRoFU3oA2gWR0CcUd38XN1RdX2UKGgGaAloD0MIzJpY4Cs6IkCUhpRSlGgVS/JoFkdAnFJRYzSCv3V9lChoBmgJaA9DCJp9HqM8q1FAlIaUUpRoFUvnaBZHQJxW0wtapxZ1fZQoaAZoCWgPQwghdTv7Sg5jQJSGlFKUaBVN6ANoFkdAnFo+xjawlnV9lChoBmgJaA9DCL9J06DoqWJAlIaUUpRoFU3oA2gWR0CcXMJNCZ4OdX2UKGgGaAloD0MIOe6UDlZWY0CUhpRSlGgVTegDaBZHQJxcxutOmBR1fZQoaAZoCWgPQwjQRq6bUi4jQJSGlFKUaBVL7mgWR0CcXVbjcVQAdX2UKGgGaAloD0MI9S1zuizxZECUhpRSlGgVTegDaBZHQJxgHF+/gzh1fZQoaAZoCWgPQwiDpE+r6NNiQJSGlFKUaBVN6ANoFkdAnGC5uEVWS3V9lChoBmgJaA9DCO1FtB1TGmFAlIaUUpRoFU3oA2gWR0CcYXUoa1kUdX2UKGgGaAloD0MIrkm3JXLeZECUhpRSlGgVTegDaBZHQJxj9Bt1p0x1fZQoaAZoCWgPQwgTJ/c7FMdCQJSGlFKUaBVL8mgWR0CcZC4QBgeBdX2UKGgGaAloD0MI0jQomocdY0CUhpRSlGgVTegDaBZHQJxoSkep4r11fZQoaAZoCWgPQwhmwFlKlitlQJSGlFKUaBVN6ANoFkdAnGunLV4HHHV9lChoBmgJaA9DCP88DRgkC0pAlIaUUpRoFUvXaBZHQJxs5ufmLcd1fZQoaAZoCWgPQwgn2epySp9kQJSGlFKUaBVN6ANoFkdAnHnBUBGQS3V9lChoBmgJaA9DCF8HzhnRNmNAlIaUUpRoFU3oA2gWR0CcewmCyyD7dX2UKGgGaAloD0MI7IhDNpCgYkCUhpRSlGgVTegDaBZHQJyBWQaJhv11ZS4="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
+
"_n_updates": 320,
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
ppp-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2145b716c7ae9b66e67d162b56b9508876a140f9de4699d9fc07dcbfd1259473
|
3 |
size 87929
|
ppp-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43393
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2621f5d4d6b3bb2f62f2de80c4f1210b92e98fefdaf7d394daea6fe46b24eef9
|
3 |
size 43393
|
ppp-LunarLander-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
- Python: 3.9.16
|
3 |
- Stable-Baselines3: 1.7.0
|
4 |
-
- PyTorch:
|
5 |
- GPU Enabled: True
|
6 |
- Numpy: 1.22.4
|
7 |
- Gym: 0.21.0
|
|
|
1 |
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
- Python: 3.9.16
|
3 |
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
- GPU Enabled: True
|
6 |
- Numpy: 1.22.4
|
7 |
- Gym: 0.21.0
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 234.54076199165797, "std_reward": 68.221018668777, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-04T07:37:36.790846"}
|