File size: 2,016 Bytes
d8bbf02 a5758dc d8bbf02 a5758dc d8bbf02 2feeda4 83e8191 a5758dc 83e8191 a5758dc d8bbf02 2feeda4 d8bbf02 2feeda4 d8bbf02 2feeda4 d8bbf02 93381e2 78d0f50 93381e2 d8bbf02 2feeda4 d8bbf02 872cf08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
language:
- en
- bn
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- shhossain/rodela_dataset
metrics:
- accuracy
base_model: patrickvonplaten/wav2vec2_tiny_random
pipeline_tag: audio-classification
model-index:
- name: wav2vec2-tiny-random-rodela-classifier
results:
- task:
type: audio-classification
dataset:
name: rodela_dataset
type: test
metrics:
- type: accuracy
value: 0.91
name: accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-tiny-random-rodela-classifier
This model is a fine-tuned version of [patrickvonplaten/wav2vec2_tiny_random](https://huggingface.co/patrickvonplaten/wav2vec2_tiny_random) on [shhossain/rodela_dataset](https://huggingface.co/datasets/shhossain/rodela_dataset) dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.7650
- eval_accuracy: 0.9102
- eval_runtime: 0.2323
- eval_samples_per_second: 1054.546
- eval_steps_per_second: 133.432
- epoch: 37.0
- step: 4551
## Model description
It classifies if a audio has `rodela` in it.
## Intended uses & limitations
It was designed for `Wake Word Detection`.
## How to use
```python
# Use a pipeline as a high-level helper
from transformers import pipeline
pipe = pipeline("audio-classification", model="shhossain/wav2vec2-tiny-random-rodela-classifier")
pipe("my_audio.mp3")
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- total_train_batch_size: 4.0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
- gradient_accumulation_steps: .5
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2 |