--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-kannada-transcribe results: [] --- # whisper-small-kannada-transcribe This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3186 - Wer: 46.5829 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5240 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.1472 | 2.8517 | 750 | 0.1579 | 50.4750 | | 0.0637 | 5.7034 | 1500 | 0.1520 | 46.9813 | | 0.0185 | 8.5551 | 2250 | 0.2074 | 48.2991 | | 0.0043 | 11.4068 | 3000 | 0.2651 | 46.5216 | | 0.0013 | 14.2586 | 3750 | 0.2989 | 47.0120 | | 0.0005 | 17.1103 | 4500 | 0.3186 | 46.5829 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0