--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-hindi-transcribe results: [] --- # whisper-small-hindi-transcribe This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3134 - Wer: 21.0323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.1415 | 1.8473 | 750 | 0.1538 | 22.5756 | | 0.0787 | 3.6946 | 1500 | 0.1400 | 20.1356 | | 0.039 | 5.5419 | 2250 | 0.1561 | 20.1668 | | 0.0163 | 7.3892 | 3000 | 0.1859 | 20.6361 | | 0.0057 | 9.2365 | 3750 | 0.2193 | 21.0532 | | 0.0018 | 11.0837 | 4500 | 0.2519 | 20.9906 | | 0.0011 | 12.9310 | 5250 | 0.2728 | 21.1470 | | 0.0006 | 14.7783 | 6000 | 0.2896 | 21.3139 | | 0.0002 | 16.6256 | 6750 | 0.3043 | 21.0636 | | 0.0002 | 18.4729 | 7500 | 0.3134 | 21.0323 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0