nreimers commited on
Commit
d27719b
·
1 Parent(s): 40c3e43

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
2_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 768, "out_features": 512, "bias": false, "activation_function": "torch.nn.modules.linear.Identity"}
2_Dense/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:616d24a48f22b1097c30423a6054b8ac025fedf31ee9fbb05d5c963c56a14ecf
3
+ size 1573739
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - transformers
8
+ - transformers
9
+ - transformers
10
+ - transformers
11
+ - transformers
12
+ - transformers
13
+ - transformers
14
+ - transformers
15
+ - transformers
16
+ - transformers
17
+ - transformers
18
+ - transformers
19
+ - transformers
20
+ - transformers
21
+ - transformers
22
+ - transformers
23
+ - transformers
24
+ - transformers
25
+ ---
26
+
27
+ # sentence-transformers/clip-ViT-B-32-multilingual-v1
28
+
29
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search.
30
+
31
+
32
+
33
+ ## Usage (Sentence-Transformers)
34
+
35
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
36
+
37
+ ```
38
+ pip install -U sentence-transformers
39
+ ```
40
+
41
+ Then you can use the model like this:
42
+
43
+ ```python
44
+ from sentence_transformers import SentenceTransformer
45
+ sentences = ["This is an example sentence", "Each sentence is converted"]
46
+
47
+ model = SentenceTransformer('sentence-transformers/clip-ViT-B-32-multilingual-v1')
48
+ embeddings = model.encode(sentences)
49
+ print(embeddings)
50
+ ```
51
+
52
+
53
+
54
+ ## Evaluation Results
55
+
56
+
57
+
58
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/clip-ViT-B-32-multilingual-v1)
59
+
60
+
61
+
62
+ ## Full Model Architecture
63
+ ```
64
+ SentenceTransformer(
65
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
66
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
67
+ (2): Dense({'in_features': 768, 'out_features': 512, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
68
+ )
69
+ ```
70
+
71
+ ## Citing & Authors
72
+
73
+ This model was trained by [sentence-transformers](https://www.sbert.net/).
74
+
75
+ If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
76
+ ```bibtex
77
+ @inproceedings{reimers-2019-sentence-bert,
78
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
79
+ author = "Reimers, Nils and Gurevych, Iryna",
80
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
81
+ month = "11",
82
+ year = "2019",
83
+ publisher = "Association for Computational Linguistics",
84
+ url = "http://arxiv.org/abs/1908.10084",
85
+ }
86
+ ```
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "old_models/clip-ViT-B-32-multilingual-v1/0_Transformer",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertModel"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "initializer_range": 0.02,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "distilbert",
14
+ "n_heads": 12,
15
+ "n_layers": 6,
16
+ "output_past": true,
17
+ "pad_token_id": 0,
18
+ "qa_dropout": 0.1,
19
+ "seq_classif_dropout": 0.2,
20
+ "sinusoidal_pos_embds": false,
21
+ "tie_weights_": true,
22
+ "transformers_version": "4.7.0",
23
+ "vocab_size": 119547
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ }
20
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a220db68008f8d22d5899fbb71f51e95a34bc42402ecb967c8d42b3ab0e5000f
3
+ size 538971577
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": false, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "old_models/clip-ViT-B-32-multilingual-v1/0_Transformer", "do_basic_tokenize": true, "never_split": null}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff