--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_cross_vocabulary_task6_fold5 results: [] --- # arabert_cross_vocabulary_task6_fold5 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3785 - Qwk: 0.8516 - Mse: 0.3785 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | No log | 0.0328 | 2 | 3.9811 | 0.0 | 3.9811 | | No log | 0.0656 | 4 | 2.1407 | 0.1479 | 2.1407 | | No log | 0.0984 | 6 | 1.1264 | 0.1813 | 1.1264 | | No log | 0.1311 | 8 | 0.8366 | 0.5074 | 0.8366 | | No log | 0.1639 | 10 | 0.8195 | 0.5441 | 0.8195 | | No log | 0.1967 | 12 | 1.0058 | 0.5881 | 1.0058 | | No log | 0.2295 | 14 | 1.0622 | 0.6346 | 1.0622 | | No log | 0.2623 | 16 | 0.9868 | 0.6510 | 0.9868 | | No log | 0.2951 | 18 | 0.6515 | 0.7729 | 0.6515 | | No log | 0.3279 | 20 | 0.3945 | 0.6974 | 0.3945 | | No log | 0.3607 | 22 | 0.5838 | 0.5376 | 0.5838 | | No log | 0.3934 | 24 | 0.3960 | 0.6758 | 0.3960 | | No log | 0.4262 | 26 | 0.3530 | 0.8548 | 0.3530 | | No log | 0.4590 | 28 | 0.6972 | 0.8507 | 0.6972 | | No log | 0.4918 | 30 | 0.8848 | 0.8086 | 0.8848 | | No log | 0.5246 | 32 | 0.8411 | 0.8211 | 0.8411 | | No log | 0.5574 | 34 | 0.7868 | 0.8137 | 0.7868 | | No log | 0.5902 | 36 | 0.6804 | 0.8522 | 0.6804 | | No log | 0.6230 | 38 | 0.5836 | 0.8642 | 0.5836 | | No log | 0.6557 | 40 | 0.4481 | 0.8666 | 0.4481 | | No log | 0.6885 | 42 | 0.3439 | 0.8485 | 0.3439 | | No log | 0.7213 | 44 | 0.3168 | 0.8084 | 0.3168 | | No log | 0.7541 | 46 | 0.3134 | 0.7968 | 0.3134 | | No log | 0.7869 | 48 | 0.3070 | 0.7933 | 0.3070 | | No log | 0.8197 | 50 | 0.3050 | 0.8144 | 0.3050 | | No log | 0.8525 | 52 | 0.3093 | 0.8265 | 0.3093 | | No log | 0.8852 | 54 | 0.3243 | 0.8430 | 0.3243 | | No log | 0.9180 | 56 | 0.3471 | 0.8435 | 0.3471 | | No log | 0.9508 | 58 | 0.3676 | 0.8531 | 0.3676 | | No log | 0.9836 | 60 | 0.3785 | 0.8516 | 0.3785 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1