--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_cross_vocabulary_task6_fold4 results: [] --- # arabert_cross_vocabulary_task6_fold4 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9017 - Qwk: 0.7854 - Mse: 0.9017 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | No log | 0.0323 | 2 | 3.2692 | 0.0190 | 3.2692 | | No log | 0.0645 | 4 | 2.2061 | 0.1047 | 2.2061 | | No log | 0.0968 | 6 | 1.4731 | 0.2850 | 1.4731 | | No log | 0.1290 | 8 | 1.4939 | 0.3745 | 1.4939 | | No log | 0.1613 | 10 | 1.4323 | 0.5432 | 1.4323 | | No log | 0.1935 | 12 | 1.1650 | 0.5658 | 1.1650 | | No log | 0.2258 | 14 | 1.2574 | 0.6380 | 1.2574 | | No log | 0.2581 | 16 | 1.5764 | 0.6494 | 1.5764 | | No log | 0.2903 | 18 | 1.5312 | 0.6719 | 1.5312 | | No log | 0.3226 | 20 | 1.0794 | 0.7533 | 1.0794 | | No log | 0.3548 | 22 | 0.7210 | 0.7812 | 0.7210 | | No log | 0.3871 | 24 | 0.6686 | 0.7619 | 0.6686 | | No log | 0.4194 | 26 | 0.7673 | 0.8035 | 0.7673 | | No log | 0.4516 | 28 | 0.9964 | 0.7709 | 0.9964 | | No log | 0.4839 | 30 | 1.0717 | 0.7698 | 1.0717 | | No log | 0.5161 | 32 | 1.0503 | 0.7731 | 1.0503 | | No log | 0.5484 | 34 | 0.9077 | 0.7987 | 0.9077 | | No log | 0.5806 | 36 | 0.7545 | 0.8028 | 0.7545 | | No log | 0.6129 | 38 | 0.7792 | 0.8013 | 0.7792 | | No log | 0.6452 | 40 | 0.7860 | 0.7981 | 0.7860 | | No log | 0.6774 | 42 | 0.7492 | 0.7988 | 0.7492 | | No log | 0.7097 | 44 | 0.7053 | 0.8126 | 0.7053 | | No log | 0.7419 | 46 | 0.7612 | 0.8056 | 0.7612 | | No log | 0.7742 | 48 | 0.8008 | 0.7851 | 0.8008 | | No log | 0.8065 | 50 | 0.8570 | 0.7727 | 0.8570 | | No log | 0.8387 | 52 | 0.8902 | 0.7709 | 0.8902 | | No log | 0.8710 | 54 | 0.9179 | 0.7780 | 0.9179 | | No log | 0.9032 | 56 | 0.9185 | 0.7758 | 0.9185 | | No log | 0.9355 | 58 | 0.9139 | 0.7854 | 0.9139 | | No log | 0.9677 | 60 | 0.9045 | 0.7854 | 0.9045 | | No log | 1.0 | 62 | 0.9017 | 0.7854 | 0.9017 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1