--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_cross_vocabulary_task5_fold6 results: [] --- # arabert_cross_vocabulary_task5_fold6 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4885 - Qwk: 0.6405 - Mse: 0.4871 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | No log | 0.0328 | 2 | 1.7653 | 0.0854 | 1.7539 | | No log | 0.0656 | 4 | 0.9960 | 0.2694 | 0.9869 | | No log | 0.0984 | 6 | 1.0209 | 0.4489 | 1.0210 | | No log | 0.1311 | 8 | 1.2656 | 0.2397 | 1.2659 | | No log | 0.1639 | 10 | 1.1746 | 0.1146 | 1.1733 | | No log | 0.1967 | 12 | 1.0616 | 0.1286 | 1.0603 | | No log | 0.2295 | 14 | 0.9704 | 0.1900 | 0.9690 | | No log | 0.2623 | 16 | 0.8921 | 0.2622 | 0.8910 | | No log | 0.2951 | 18 | 0.8267 | 0.4004 | 0.8262 | | No log | 0.3279 | 20 | 0.7715 | 0.4447 | 0.7714 | | No log | 0.3607 | 22 | 0.7094 | 0.4821 | 0.7095 | | No log | 0.3934 | 24 | 0.6609 | 0.5270 | 0.6611 | | No log | 0.4262 | 26 | 0.6404 | 0.5798 | 0.6403 | | No log | 0.4590 | 28 | 0.6536 | 0.6218 | 0.6535 | | No log | 0.4918 | 30 | 0.6622 | 0.6382 | 0.6618 | | No log | 0.5246 | 32 | 0.6200 | 0.6334 | 0.6191 | | No log | 0.5574 | 34 | 0.6047 | 0.6457 | 0.6038 | | No log | 0.5902 | 36 | 0.6135 | 0.6481 | 0.6127 | | No log | 0.6230 | 38 | 0.6735 | 0.6781 | 0.6730 | | No log | 0.6557 | 40 | 0.6993 | 0.6904 | 0.6989 | | No log | 0.6885 | 42 | 0.6637 | 0.6940 | 0.6631 | | No log | 0.7213 | 44 | 0.6006 | 0.7091 | 0.5995 | | No log | 0.7541 | 46 | 0.5531 | 0.7057 | 0.5517 | | No log | 0.7869 | 48 | 0.5246 | 0.6740 | 0.5231 | | No log | 0.8197 | 50 | 0.5072 | 0.6225 | 0.5054 | | No log | 0.8525 | 52 | 0.5048 | 0.5882 | 0.5030 | | No log | 0.8852 | 54 | 0.5019 | 0.5965 | 0.5002 | | No log | 0.9180 | 56 | 0.4958 | 0.6015 | 0.4942 | | No log | 0.9508 | 58 | 0.4908 | 0.6094 | 0.4893 | | No log | 0.9836 | 60 | 0.4885 | 0.6405 | 0.4871 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1