--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_cross_vocabulary_task4_fold1 results: [] --- # arabert_cross_vocabulary_task4_fold1 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5474 - Qwk: 0.4497 - Mse: 0.5474 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:| | No log | 0.0308 | 2 | 8.1440 | -0.0005 | 8.1440 | | No log | 0.0615 | 4 | 4.7743 | 0.0021 | 4.7743 | | No log | 0.0923 | 6 | 2.7118 | 0.0416 | 2.7118 | | No log | 0.1231 | 8 | 1.7150 | 0.0799 | 1.7150 | | No log | 0.1538 | 10 | 0.8541 | 0.1088 | 0.8541 | | No log | 0.1846 | 12 | 0.8601 | 0.1094 | 0.8601 | | No log | 0.2154 | 14 | 0.8470 | 0.1589 | 0.8470 | | No log | 0.2462 | 16 | 1.0145 | 0.1789 | 1.0145 | | No log | 0.2769 | 18 | 1.4913 | 0.1666 | 1.4913 | | No log | 0.3077 | 20 | 1.4930 | 0.2073 | 1.4930 | | No log | 0.3385 | 22 | 0.8055 | 0.3243 | 0.8055 | | No log | 0.3692 | 24 | 0.5508 | 0.4354 | 0.5508 | | No log | 0.4 | 26 | 0.6031 | 0.3790 | 0.6031 | | No log | 0.4308 | 28 | 0.5860 | 0.4121 | 0.5860 | | No log | 0.4615 | 30 | 0.6336 | 0.4190 | 0.6336 | | No log | 0.4923 | 32 | 0.9905 | 0.3071 | 0.9905 | | No log | 0.5231 | 34 | 1.0889 | 0.2932 | 1.0889 | | No log | 0.5538 | 36 | 0.8745 | 0.3389 | 0.8745 | | No log | 0.5846 | 38 | 0.7332 | 0.3681 | 0.7332 | | No log | 0.6154 | 40 | 0.6486 | 0.3927 | 0.6486 | | No log | 0.6462 | 42 | 0.6347 | 0.3914 | 0.6347 | | No log | 0.6769 | 44 | 0.6439 | 0.3923 | 0.6439 | | No log | 0.7077 | 46 | 0.6224 | 0.4042 | 0.6224 | | No log | 0.7385 | 48 | 0.6224 | 0.4075 | 0.6224 | | No log | 0.7692 | 50 | 0.5740 | 0.4350 | 0.5740 | | No log | 0.8 | 52 | 0.5606 | 0.4443 | 0.5606 | | No log | 0.8308 | 54 | 0.5580 | 0.4473 | 0.5580 | | No log | 0.8615 | 56 | 0.5443 | 0.4451 | 0.5443 | | No log | 0.8923 | 58 | 0.5430 | 0.4451 | 0.5430 | | No log | 0.9231 | 60 | 0.5370 | 0.4575 | 0.5370 | | No log | 0.9538 | 62 | 0.5412 | 0.4517 | 0.5412 | | No log | 0.9846 | 64 | 0.5474 | 0.4497 | 0.5474 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1