salbatarni commited on
Commit
8042747
·
verified ·
1 Parent(s): 30fdc25

End of training

Browse files
Files changed (1) hide show
  1. README.md +97 -87
README.md CHANGED
@@ -3,20 +3,20 @@ base_model: aubmindlab/bert-base-arabertv02
3
  tags:
4
  - generated_from_trainer
5
  model-index:
6
- - name: arabert_cross_relevance_task3_fold1
7
  results: []
8
  ---
9
 
10
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
  should probably proofread and complete it, then remove this comment. -->
12
 
13
- # arabert_cross_relevance_task3_fold1
14
 
15
  This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
- - Loss: 0.1458
18
- - Qwk: 0.0595
19
- - Mse: 0.1458
20
 
21
  ## Model description
22
 
@@ -45,88 +45,98 @@ The following hyperparameters were used during training:
45
 
46
  ### Training results
47
 
48
- | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
49
- |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|
50
- | No log | 0.125 | 2 | 0.7079 | -0.0000 | 0.7079 |
51
- | No log | 0.25 | 4 | 0.1912 | 0.0157 | 0.1912 |
52
- | No log | 0.375 | 6 | 0.1659 | 0.0284 | 0.1659 |
53
- | No log | 0.5 | 8 | 0.3128 | 0.0094 | 0.3128 |
54
- | No log | 0.625 | 10 | 0.2898 | 0.0076 | 0.2898 |
55
- | No log | 0.75 | 12 | 0.2065 | 0.0185 | 0.2065 |
56
- | No log | 0.875 | 14 | 0.1447 | 0.0270 | 0.1447 |
57
- | No log | 1.0 | 16 | 0.1501 | 0.0387 | 0.1501 |
58
- | No log | 1.125 | 18 | 0.2147 | 0.0278 | 0.2147 |
59
- | No log | 1.25 | 20 | 0.2330 | 0.0260 | 0.2330 |
60
- | No log | 1.375 | 22 | 0.1773 | 0.0402 | 0.1773 |
61
- | No log | 1.5 | 24 | 0.1419 | 0.0853 | 0.1419 |
62
- | No log | 1.625 | 26 | 0.1384 | 0.0553 | 0.1384 |
63
- | No log | 1.75 | 28 | 0.1481 | 0.0342 | 0.1481 |
64
- | No log | 1.875 | 30 | 0.1586 | 0.0376 | 0.1586 |
65
- | No log | 2.0 | 32 | 0.1665 | 0.0463 | 0.1665 |
66
- | No log | 2.125 | 34 | 0.1964 | 0.0423 | 0.1964 |
67
- | No log | 2.25 | 36 | 0.1779 | 0.0511 | 0.1779 |
68
- | No log | 2.375 | 38 | 0.1542 | 0.1019 | 0.1542 |
69
- | No log | 2.5 | 40 | 0.1505 | 0.1356 | 0.1505 |
70
- | No log | 2.625 | 42 | 0.1422 | 0.1332 | 0.1422 |
71
- | No log | 2.75 | 44 | 0.1427 | 0.0769 | 0.1427 |
72
- | No log | 2.875 | 46 | 0.1755 | 0.0359 | 0.1755 |
73
- | No log | 3.0 | 48 | 0.2548 | 0.0300 | 0.2548 |
74
- | No log | 3.125 | 50 | 0.2939 | 0.0263 | 0.2939 |
75
- | No log | 3.25 | 52 | 0.2512 | 0.0263 | 0.2512 |
76
- | No log | 3.375 | 54 | 0.1646 | 0.0268 | 0.1646 |
77
- | No log | 3.5 | 56 | 0.1283 | 0.1045 | 0.1283 |
78
- | No log | 3.625 | 58 | 0.1365 | 0.1428 | 0.1365 |
79
- | No log | 3.75 | 60 | 0.1354 | 0.1127 | 0.1354 |
80
- | No log | 3.875 | 62 | 0.1424 | 0.0619 | 0.1424 |
81
- | No log | 4.0 | 64 | 0.2058 | 0.0376 | 0.2058 |
82
- | No log | 4.125 | 66 | 0.2354 | 0.0359 | 0.2354 |
83
- | No log | 4.25 | 68 | 0.1903 | 0.0376 | 0.1903 |
84
- | No log | 4.375 | 70 | 0.1417 | 0.0497 | 0.1417 |
85
- | No log | 4.5 | 72 | 0.1346 | 0.0775 | 0.1346 |
86
- | No log | 4.625 | 74 | 0.1423 | 0.0729 | 0.1423 |
87
- | No log | 4.75 | 76 | 0.1585 | 0.0451 | 0.1585 |
88
- | No log | 4.875 | 78 | 0.1582 | 0.0399 | 0.1582 |
89
- | No log | 5.0 | 80 | 0.1374 | 0.0729 | 0.1374 |
90
- | No log | 5.125 | 82 | 0.1284 | 0.1045 | 0.1284 |
91
- | No log | 5.25 | 84 | 0.1284 | 0.1110 | 0.1284 |
92
- | No log | 5.375 | 86 | 0.1307 | 0.0769 | 0.1307 |
93
- | No log | 5.5 | 88 | 0.1473 | 0.0351 | 0.1473 |
94
- | No log | 5.625 | 90 | 0.1726 | 0.0389 | 0.1726 |
95
- | No log | 5.75 | 92 | 0.1734 | 0.0441 | 0.1734 |
96
- | No log | 5.875 | 94 | 0.1544 | 0.0547 | 0.1544 |
97
- | No log | 6.0 | 96 | 0.1361 | 0.1029 | 0.1361 |
98
- | No log | 6.125 | 98 | 0.1362 | 0.1379 | 0.1362 |
99
- | No log | 6.25 | 100 | 0.1358 | 0.1551 | 0.1358 |
100
- | No log | 6.375 | 102 | 0.1338 | 0.1029 | 0.1338 |
101
- | No log | 6.5 | 104 | 0.1417 | 0.0744 | 0.1417 |
102
- | No log | 6.625 | 106 | 0.1467 | 0.0647 | 0.1467 |
103
- | No log | 6.75 | 108 | 0.1456 | 0.0627 | 0.1456 |
104
- | No log | 6.875 | 110 | 0.1429 | 0.0609 | 0.1429 |
105
- | No log | 7.0 | 112 | 0.1442 | 0.0609 | 0.1442 |
106
- | No log | 7.125 | 114 | 0.1423 | 0.0669 | 0.1423 |
107
- | No log | 7.25 | 116 | 0.1407 | 0.0554 | 0.1407 |
108
- | No log | 7.375 | 118 | 0.1417 | 0.0675 | 0.1417 |
109
- | No log | 7.5 | 120 | 0.1453 | 0.0634 | 0.1453 |
110
- | No log | 7.625 | 122 | 0.1508 | 0.0661 | 0.1508 |
111
- | No log | 7.75 | 124 | 0.1573 | 0.0603 | 0.1573 |
112
- | No log | 7.875 | 126 | 0.1579 | 0.0547 | 0.1579 |
113
- | No log | 8.0 | 128 | 0.1512 | 0.0591 | 0.1512 |
114
- | No log | 8.125 | 130 | 0.1432 | 0.0733 | 0.1432 |
115
- | No log | 8.25 | 132 | 0.1387 | 0.0861 | 0.1387 |
116
- | No log | 8.375 | 134 | 0.1376 | 0.0883 | 0.1376 |
117
- | No log | 8.5 | 136 | 0.1388 | 0.0738 | 0.1388 |
118
- | No log | 8.625 | 138 | 0.1432 | 0.0811 | 0.1432 |
119
- | No log | 8.75 | 140 | 0.1486 | 0.0669 | 0.1486 |
120
- | No log | 8.875 | 142 | 0.1523 | 0.0591 | 0.1523 |
121
- | No log | 9.0 | 144 | 0.1538 | 0.0610 | 0.1538 |
122
- | No log | 9.125 | 146 | 0.1533 | 0.0534 | 0.1533 |
123
- | No log | 9.25 | 148 | 0.1515 | 0.0592 | 0.1515 |
124
- | No log | 9.375 | 150 | 0.1492 | 0.0574 | 0.1492 |
125
- | No log | 9.5 | 152 | 0.1465 | 0.0534 | 0.1465 |
126
- | No log | 9.625 | 154 | 0.1454 | 0.0595 | 0.1454 |
127
- | No log | 9.75 | 156 | 0.1453 | 0.0595 | 0.1453 |
128
- | No log | 9.875 | 158 | 0.1457 | 0.0595 | 0.1457 |
129
- | No log | 10.0 | 160 | 0.1458 | 0.0595 | 0.1458 |
 
 
 
 
 
 
 
 
 
 
130
 
131
 
132
  ### Framework versions
 
3
  tags:
4
  - generated_from_trainer
5
  model-index:
6
+ - name: arabert_cross_relevance_task3_fold2
7
  results: []
8
  ---
9
 
10
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
  should probably proofread and complete it, then remove this comment. -->
12
 
13
+ # arabert_cross_relevance_task3_fold2
14
 
15
  This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
+ - Loss: 0.3250
18
+ - Qwk: -0.0612
19
+ - Mse: 0.3250
20
 
21
  ## Model description
22
 
 
45
 
46
  ### Training results
47
 
48
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
49
+ |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|
50
+ | No log | 0.1111 | 2 | 0.3649 | 0.0417 | 0.3649 |
51
+ | No log | 0.2222 | 4 | 0.3523 | 0.0574 | 0.3523 |
52
+ | No log | 0.3333 | 6 | 0.3294 | -0.0145 | 0.3294 |
53
+ | No log | 0.4444 | 8 | 0.3150 | 0.0 | 0.3150 |
54
+ | No log | 0.5556 | 10 | 0.3425 | -0.0766 | 0.3425 |
55
+ | No log | 0.6667 | 12 | 0.5181 | -0.0897 | 0.5181 |
56
+ | No log | 0.7778 | 14 | 0.5767 | -0.0417 | 0.5767 |
57
+ | No log | 0.8889 | 16 | 0.4852 | 0.0584 | 0.4852 |
58
+ | No log | 1.0 | 18 | 0.4593 | 0.0244 | 0.4593 |
59
+ | No log | 1.1111 | 20 | 0.4073 | -0.0106 | 0.4073 |
60
+ | No log | 1.2222 | 22 | 0.3911 | 0.1832 | 0.3911 |
61
+ | No log | 1.3333 | 24 | 0.5107 | 0.0132 | 0.5107 |
62
+ | No log | 1.4444 | 26 | 0.5836 | 0.0068 | 0.5836 |
63
+ | No log | 1.5556 | 28 | 0.4981 | 0.0584 | 0.4981 |
64
+ | No log | 1.6667 | 30 | 0.4625 | -0.0802 | 0.4625 |
65
+ | No log | 1.7778 | 32 | 0.4676 | -0.0714 | 0.4676 |
66
+ | No log | 1.8889 | 34 | 0.4572 | -0.1310 | 0.4572 |
67
+ | No log | 2.0 | 36 | 0.4709 | -0.0802 | 0.4709 |
68
+ | No log | 2.1111 | 38 | 0.4247 | -0.1559 | 0.4247 |
69
+ | No log | 2.2222 | 40 | 0.4232 | -0.1413 | 0.4232 |
70
+ | No log | 2.3333 | 42 | 0.3999 | -0.1667 | 0.3999 |
71
+ | No log | 2.4444 | 44 | 0.4332 | -0.1813 | 0.4332 |
72
+ | No log | 2.5556 | 46 | 0.3931 | -0.1574 | 0.3931 |
73
+ | No log | 2.6667 | 48 | 0.3256 | -0.1331 | 0.3256 |
74
+ | No log | 2.7778 | 50 | 0.3008 | -0.0235 | 0.3008 |
75
+ | No log | 2.8889 | 52 | 0.3005 | -0.0473 | 0.3005 |
76
+ | No log | 3.0 | 54 | 0.3003 | -0.0714 | 0.3003 |
77
+ | No log | 3.1111 | 56 | 0.3285 | -0.0507 | 0.3285 |
78
+ | No log | 3.2222 | 58 | 0.3502 | -0.1508 | 0.3502 |
79
+ | No log | 3.3333 | 60 | 0.3399 | -0.0556 | 0.3399 |
80
+ | No log | 3.4444 | 62 | 0.3233 | -0.0563 | 0.3233 |
81
+ | No log | 3.5556 | 64 | 0.3562 | -0.0833 | 0.3562 |
82
+ | No log | 3.6667 | 66 | 0.3846 | -0.0981 | 0.3846 |
83
+ | No log | 3.7778 | 68 | 0.3873 | -0.2037 | 0.3873 |
84
+ | No log | 3.8889 | 70 | 0.3435 | -0.0870 | 0.3435 |
85
+ | No log | 4.0 | 72 | 0.3453 | -0.0971 | 0.3453 |
86
+ | No log | 4.1111 | 74 | 0.3477 | -0.1594 | 0.3477 |
87
+ | No log | 4.2222 | 76 | 0.3299 | -0.0563 | 0.3299 |
88
+ | No log | 4.3333 | 78 | 0.3344 | -0.0507 | 0.3344 |
89
+ | No log | 4.4444 | 80 | 0.3511 | -0.2097 | 0.3511 |
90
+ | No log | 4.5556 | 82 | 0.3423 | -0.1154 | 0.3423 |
91
+ | No log | 4.6667 | 84 | 0.3303 | -0.0971 | 0.3303 |
92
+ | No log | 4.7778 | 86 | 0.3029 | -0.0473 | 0.3029 |
93
+ | No log | 4.8889 | 88 | 0.2956 | -0.0235 | 0.2956 |
94
+ | No log | 5.0 | 90 | 0.2958 | -0.0235 | 0.2958 |
95
+ | No log | 5.1111 | 92 | 0.2967 | -0.0235 | 0.2967 |
96
+ | No log | 5.2222 | 94 | 0.3097 | -0.0616 | 0.3097 |
97
+ | No log | 5.3333 | 96 | 0.3615 | -0.0366 | 0.3615 |
98
+ | No log | 5.4444 | 98 | 0.4248 | -0.1224 | 0.4248 |
99
+ | No log | 5.5556 | 100 | 0.4152 | -0.1000 | 0.4152 |
100
+ | No log | 5.6667 | 102 | 0.3541 | 0.0200 | 0.3541 |
101
+ | No log | 5.7778 | 104 | 0.3081 | -0.0764 | 0.3081 |
102
+ | No log | 5.8889 | 106 | 0.2999 | -0.0473 | 0.2999 |
103
+ | No log | 6.0 | 108 | 0.3089 | -0.0616 | 0.3089 |
104
+ | No log | 6.1111 | 110 | 0.3305 | -0.1620 | 0.3305 |
105
+ | No log | 6.2222 | 112 | 0.3428 | -0.1397 | 0.3428 |
106
+ | No log | 6.3333 | 114 | 0.3362 | -0.1496 | 0.3362 |
107
+ | No log | 6.4444 | 116 | 0.3379 | -0.1194 | 0.3379 |
108
+ | No log | 6.5556 | 118 | 0.3505 | -0.0827 | 0.3505 |
109
+ | No log | 6.6667 | 120 | 0.3567 | -0.0827 | 0.3567 |
110
+ | No log | 6.7778 | 122 | 0.3610 | -0.0772 | 0.3610 |
111
+ | No log | 6.8889 | 124 | 0.3491 | -0.0769 | 0.3491 |
112
+ | No log | 7.0 | 126 | 0.3359 | -0.0448 | 0.3359 |
113
+ | No log | 7.1111 | 128 | 0.3213 | -0.0714 | 0.3213 |
114
+ | No log | 7.2222 | 130 | 0.3241 | -0.0714 | 0.3241 |
115
+ | No log | 7.3333 | 132 | 0.3400 | -0.0985 | 0.3400 |
116
+ | No log | 7.4444 | 134 | 0.3581 | -0.0537 | 0.3581 |
117
+ | No log | 7.5556 | 136 | 0.3622 | -0.0833 | 0.3622 |
118
+ | No log | 7.6667 | 138 | 0.3448 | -0.0659 | 0.3448 |
119
+ | No log | 7.7778 | 140 | 0.3219 | -0.0764 | 0.3219 |
120
+ | No log | 7.8889 | 142 | 0.3076 | -0.0616 | 0.3076 |
121
+ | No log | 8.0 | 144 | 0.3064 | -0.0616 | 0.3064 |
122
+ | No log | 8.1111 | 146 | 0.3132 | -0.0616 | 0.3132 |
123
+ | No log | 8.2222 | 148 | 0.3268 | -0.0612 | 0.3268 |
124
+ | No log | 8.3333 | 150 | 0.3441 | -0.1260 | 0.3441 |
125
+ | No log | 8.4444 | 152 | 0.3508 | -0.1328 | 0.3508 |
126
+ | No log | 8.5556 | 154 | 0.3460 | -0.1154 | 0.3460 |
127
+ | No log | 8.6667 | 156 | 0.3385 | -0.0606 | 0.3385 |
128
+ | No log | 8.7778 | 158 | 0.3312 | -0.0294 | 0.3312 |
129
+ | No log | 8.8889 | 160 | 0.3268 | -0.0294 | 0.3268 |
130
+ | No log | 9.0 | 162 | 0.3251 | -0.0507 | 0.3251 |
131
+ | No log | 9.1111 | 164 | 0.3282 | -0.0294 | 0.3282 |
132
+ | No log | 9.2222 | 166 | 0.3331 | -0.1090 | 0.3331 |
133
+ | No log | 9.3333 | 168 | 0.3347 | -0.1090 | 0.3347 |
134
+ | No log | 9.4444 | 170 | 0.3357 | -0.1090 | 0.3357 |
135
+ | No log | 9.5556 | 172 | 0.3343 | -0.1090 | 0.3343 |
136
+ | No log | 9.6667 | 174 | 0.3318 | -0.0556 | 0.3318 |
137
+ | No log | 9.7778 | 176 | 0.3286 | -0.0662 | 0.3286 |
138
+ | No log | 9.8889 | 178 | 0.3261 | -0.0766 | 0.3261 |
139
+ | No log | 10.0 | 180 | 0.3250 | -0.0612 | 0.3250 |
140
 
141
 
142
  ### Framework versions